Navigation Links
Researchers Use Magnetism to Target Cells to Animal Arteries

- Magnetically Guided Nanoparticles May Deliver Treatments to Human Organs -

PHILADELPHIA, Jan. 7 /PRNewswire-USNewswire/ -- Scientists have used magnetic fields and tiny iron-bearing particles to drive healthy cells to targeted sites in blood vessels. The research, done in animals, may lead to a new method of delivering cells and genes to repair injured or diseased organs in people.

(Photo: )

The study team, led by Robert J. Levy, M.D., the William J. Rashkind Chair of Pediatric Cardiology at The Children's Hospital of Philadelphia, loaded endothelial cells, flat cells that line the inside of blood vessels, with nanoparticles, tiny spheres nanometers in diameter. The nanoparticles contained iron oxide.

Using an external, uniform magnetic field, Levy's team directed the cells into steel stents, small metal scaffolds that had been inserted into the carotid arteries of rats. The uniform magnetic field created "magnetic gradients," local regions of high magnetic force that magnetized both the nanoparticles and the stents, thus increasing the attraction between the particles and their target.

The study appears in the Proceedings of the National Academy of Sciences, published online on Jan. 7. Dr. Levy's group from Children's Hospital collaborated with engineers from Drexel University and Duke University.

"This is a novel strategy for delivering cells to targets in the body," said Levy, who added that previous researchers have pursued other, less successful approaches to introduce endothelial cells to diseased blood vessels, in the developing medical field of cell therapy.

Levy's team created nanoparticles, approximately 290 nanometers across, made of the biodegradable polymer, polylactic acid, and impregnated with iron oxide. (A nanometer is a millionth of a millimeter; in comparison to these nanoparticles, red blood cells are ten to 100 times larger.)

The researchers loaded the nanoparticles into endothelial cells, which had been genetically modified to produce a specific color that could be detected by an imaging system while the animals were alive. After introducing stainless steel stents into rats' carotid arteries, Levy's team used magnetic fields to steer the cells into the stents.

Patients with heart disease commonly receive metal stents in partially blocked blood vessels to improve blood flow, both by widening the vessels and delivering drugs. However, many stents fail over time as smooth muscle cells accumulate excessively on their surfaces and create new blockages. One goal of cell therapy is to introduce new endothelial cells to recoat stents with a smooth surface.

Furthermore, Levy adds, while drug-releasing stents currently provide benefits in treating diseased coronary arteries, they have proved far less effective in treating peripheral vascular disease, such as that occurring in patients with diabetes. In such cases, severe problems in blood circulation may force doctors to amputate a leg. In upcoming animal studies, Levy's team will use their delivery approach to deliver magnetic nanoparticles to peripheral arteries.

Future studies, Levy added, also will use cells derived from the animal itself, to avoid potential rejection problems that may occur with unmatched cells. The current study used unmatched cells, delivering bovine cells to rat arteries, but only over a 48-hour period, too brief for rejection to occur.

The current study builds on research published earlier this year by Levy and collaborators, in which they used magnetic fields and nanoparticles to deliver DNA to arterial muscle cells in culture. That research focused on a delivery system for gene therapy, while the current study represents cell therapy. Levy suggests future applications may combine both therapies, using endothelial cells to deliver beneficial genes to damaged arteries.

The delivery system, says Levy, might also be applied to other sites where physicians implant steel stents to deliver medication, such as the esophagus, bile ducts and lungs. Another potential use might be in orthopedic procedures, in which surgeons implant steel nails to stabilize fractured bones, or use steel screws to correct spinal abnormalities. In such cases, magnetized nanoparticles might deliver bone stem cells to strengthen bony structures.

"Magnetic fields produced by ordinary MRI machines could suffice to deliver cells to targets where they could promote healing, since MRI uses uniform fields, which are key to our targeting strategy," added Levy. "This method could become a powerful medical tool."

Financial support for the study came from the National Institutes of Health, the Nanotechnology Institute, and both the William J. Rashkind Endowment and Erin's Fund of The Children's Hospital of Philadelphia. Dr. Levy's co-authors were Ilia Fishbein, M.D., Michael Chorny, Ph.D., Ivan S. Alferiev, Ph.D., and Darryl Williams, of Children's Hospital; Boris Polyak, M.D., and Gary Friedman, Ph.D., of Drexel University; and Ben Yellen, Ph.D., of Duke University.

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking third in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 430-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit

CONTACT: John Ascenzi of the Children's Hospital of Philadelphia, +1-267-426-6055,

SOURCE The Children's Hospital of Philadelphia
Copyright©2008 PR Newswire.
All rights reserved

Related medicine technology :

1. Novel Mechanism for Long-Term Learning Identified by Carnegie Mellon Researchers
2. Researchers Train the Immune System to Deliver Virus That Destroys Cancer in Lab Models
3. Researchers Develop New Procedure to Screen All 46 Human Chromosomes to Identify Abnormalities in Embryos
4. Potential Breakthrough Cancer Treatment Emerges from MIPS-Funded Clinical Trial Teaming CSA Medical Inc. and University of Maryland Researchers
5. Researchers Report First Successful Treatment of Chronic Traumatic Brain Injury
6. 454 Sequencing(TM) in Science Today: Researchers Uncover a Genetic Basis for Different Social Behaviors in Wasps
7. U. of Md. Researchers to Develop Devices to Revolutionize Drug Research
8. K-State Researchers Bringing Expertise to Kansas City Symposium on Disease and National Security
9. Peregrine Researchers Report Data Showing Bavituximabs Potential to Shrink Human Prostate Tumors in Model of Relapsed Disease
10. Researchers Identify Virus Possibly Responsible for Declining Honeybee Population Using 454 Sequencing Technology from Roche
11. Cleveland Clinic Researchers Identify Mechanism Behind Platelet Function and Potentially Fatal Blood Clot Formation
Post Your Comments:
(Date:11/25/2015)... 2015 Kitov Pharma ceuticals ... a biopharmaceutical company focused on the development of therapeutic ... today announced the closing of its previously announced underwritten ... ), each representing 20 ordinary shares of the Company, ... ADSs and warrants were issued in a fixed combination ...
(Date:11/25/2015)... -- Allergan plc (NYSE: AGN ) today announced that ... York State Attorney General,s Office to end the ... statutes with the Attorney General over the decision of Forest ... selling the now generic version of memantine immediate release tablets.  ... released its counterclaims against New York , ...
(Date:11/25/2015)... -- Trovagene, Inc. (NASDAQ: TROV ), a developer of ... Antonius Schuh, Ph.D., is scheduled to present a corporate ... Healthcare Conference. th Annual Piper Jaffray ... New York on Tuesday, December ... be available for one-on-one meetings during the conference. The ...
Breaking Medicine Technology:
(Date:11/25/2015)... ... 25, 2015 , ... The McHenry County law firm of Botto Gilbert ... Attorneys Francisco J. Botto and Alex C. Wimmer. Attorneys Botto and Wimmer represented the ... App (2d) 130884WC. , According to court documents, Adcock testified that on May 10, ...
(Date:11/25/2015)... ... November 25, 2015 , ... On November 23rd 2015 Cozy ... personal heating products business. Cozy Products explains what this means for business moving ... well with the Cozy Products business model: to sell personal heaters that reduce energy ...
(Date:11/25/2015)... ... November 25, 2015 , ... Smiles by Stevens is ... and moderate facial wrinkling. While many patients are aware of the benefits of Botox® ... Botox® delivers to those suffering with discomfort, soreness, and pain as a result of ...
(Date:11/25/2015)... (PRWEB) , ... November 25, 2015 , ... ... a double board certified facial plastic surgeon specializing in both surgical and non-surgical ... of The Skin Spa at Hobgood Facial Plastic Surgery. , Highly trained ...
(Date:11/25/2015)... ... 2015 , ... Beddit® has launched a new Android app for ... features a more intuitive SleepScore™ that rates sleep quality on a 100-point scale and ... created by a proprietary algorithm. Beddit analyzes the data to provide an easy to ...
Breaking Medicine News(10 mins):