Navigation Links
Study Findings Could Help In Developing A Better Drug Delivery System

A new study reveals the details of how drugs are released within a cancer cells.//

A researcher from the University of Purdue has shown for the first time ever details of how drugs are released within a cancer cell, which could lead in the improving of the ability to deliver drugs to a specific target without affecting surrounding cells.

"As a general strategy, the indiscriminate delivery of drugs into every cell of the body for the treatment of a few specific pathologic cells, such as cancer cells, is a thing of the past," said Philip Low, the Ralph C. Corley Distinguished Professor of Chemistry. "Most new drugs under development will be targeted directly to the pathologic, disease-causing cells, and we have shed light on the details of one mechanism by which this is achieved."

An understanding of the cellular process that leads to the release of targeted drugs is a major advancement for the field, he said.

"This will help others interested in targeted drug therapy," said Low, who also is founder and chief science officer of Endocyte Inc., a Purdue Research Park-based company. "The knowledge applies not only to the treatment of cancer. The understanding of how to deliver and unload a cancer drug can be extrapolated to all sorts of other diseased cells. The uptake pathways are similar in cells involved in arthritis, multiple sclerosis, psoriasis and Crohn's disease."

Interest in how drugs are released after they enter their targeted cell led Low and his team to develop a colour-coded method to visualize the cellular mechanisms. Jun Yang, a postdoctoral research associate in Low's research group, together with Ji-Xin Cheng, an assistant professor in the Department of Biomedical Engineering, and his graduate student Hongtao Cheng, developed this method using a technique called fluorescence resonance energy transfer imaging.

"The drug turns from red to green when it is released inside the cell, cle arly illuminating the process," Yang said. "This is the first optical method to be developed to monitor this release. The main promise of this method is that it does not damage the cells being studied. Therefore, we are able to observe the process under true physiological conditions and watch it right as it is happening."

This research, funded by Endocyte, will be detailed in a paper in Tuesday's (Sept. 12) issue of the Proceedings of the National Academy of Sciences and is currently available online.

In targeted drug therapy, drugs are linked to molecules that are used in excess by pathologic cells, for example a required nutrient, in order to transport drugs directly to the targeted cells while avoiding significant delivery of the toxic drug to normal cells. A commonly used agent, referred to as a ligand, is the vitamin folic acid. Cancer cells need folic acid to grow and divide and, therefore, have developed abundant receptors to capture it. These receptors are largely absent in normal cells. This means folic acid, and the drug linked to it, is attracted to the pathologic cells and is harmless to healthy cells, Low said.

Low led the team that discovered this folate-targeted treatment method in 1991 and the receptor-targeted technology is proprietary to Endocyte.

"It is desirable to have the drug released from the ligand, folic acid, once the folate-linked complex enters the cell," Yang said. "This 'conditional drug release' is usually realized by attaching folate to the drug through a linker that falls apart inside the cell. There were several linkers in common use, but with mixed efficiency. In this study we undertook to interrogate the full details of this breakdown process."

Yang examined receptor endocytosis, the process by which cells absorb materials — such as a drug attached to folic acid — that have been captured at special sites, called receptors, on the cell surface. The compound is then broken down and processed, releasing the drug.

One of the key mechanisms of this breakdown is disulfide reduction, which involves the breaking of chemical bonds. It was thought that disulfide reduction relied on the movement of the material along microtubules, hollow tube like structures, and fusion with special digestive-enzyme containing compartments within the cell called lysosomes. However, the research showed that disulfide reduction occurred even when such components were removed from the process.

By inactivating different cellular components, Yang discovered which components are essential to the disulfide reduction process.

"It was surprising to learn that many other components of the cell, aside from those previously assumed to be responsible, were capable of releasing the drug from folic acid," Yang said. "This significantly increases the opportunity for the drug to be released. For instance, we used to believe it had to get to a specific location to be released, and now we know it can happen almost anywhere during endocytosis."

The mechanisms, locations and cellular components involved in the release of drugs within a cell had been under debate for several years, Low said.

"This is the definitive statement on how drugs are released within a cell," he said. "We will use this knowledge to develop better receptor-targeted drug therapies to treat cancer and other diseases."

Low and Yang worked with scientists from the Department of Chemistry, Weldon School of Biomedical Engineering and Endocyte, and used facilities at the Oncological Sciences Centre, part of the Purdue Cancer Centre, and Bindley Bioscience Centre at Purdue's Discovery Park.

Endocyte Inc. develops receptor-targeted therapeutics for the treatment of cancer and autoimmune diseases. Endocyte has three compounds in Food and Drug Administration-regulated clinical trials: EC20, a targeted diagnostic agent that is in Phase I I studies; EC17, a targeted-hapten therapy that is in Phase I studies; and EC145, a targeted cytotoxic agent that is in phase I studies. Endocyte has licensed its vitamin-targeting technology to Bristol-Myers Squibb to target Bristol-Myers Squibb's proprietary epothilone cancer chemotherapeutic agents.

Source-Eurekalert
VI
'"/>




Related medicine news :

1. Tomato Sauce reduces Cancer Risk- Study
2. Study on obesity and heart failure
3. National Lung Study in the process
4. Study casts doubt on keyboard ills
5. Study reveals how stress can make you sick
6. Study reveals how stress can make you sick
7. Study supports vegetable diet
8. Study to look at early surgery to treat epilepsy
9. Its Never Too Late to Stop Smoking,Study Finds
10. New Technique to Study Infants Brain.
11. Groundbreaking Study Gives Hope For Patients With Kidney Cancer
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/8/2016)... Park, KS (PRWEB) , ... February 08, 2016 , ... ... a leader in Mole removal products. , Moles are derived from a cluster of ... appear in all the wrong places and create a lifetime of embarrassment. Historically, ...
(Date:2/8/2016)... ... , ... Guruji Mahendra Kumar Trivedi is offering 3 days of accelerated personal ... birthday on February 10th. During this time, people can achieve better health, greater ... people from over 40 different countries as an “ordinary man with an extraordinary gift.” ...
(Date:2/8/2016)... ... ... According to research by the National Association of Dental ... certified or obtain continuing education. To increase patient awareness of the lack of ... to inform dentists and patients about the possible lack of skills and knowledge ...
(Date:2/7/2016)... (PRWEB) , ... February 07, 2016 , ... Women's Excellence ... National Wear Red Day. National Wear Red Day is the first Friday each ... Heart disease and stroke cause 1 in 3 deaths among women each year – ...
(Date:2/7/2016)... AZ (PRWEB) , ... February 07, 2016 , ... ... Neck and Facial Plastics, has added Kybella® to his medical and surgical expertise. ... a newly approved FDA injectable medication used as a non-surgical alternative for reduction ...
Breaking Medicine News(10 mins):
(Date:2/8/2016)... India , February 8, 2016 ... a new market research report "Ablation Technologies Market by ... (Csardiovascular, Cancer, Pain Management, Cosmetic Surgery, Ophthalmology, Gynecology) - ... studies the global market over the forecast period of ... $4.44 Billion by 2020, at CAGR of 10.5% from ...
(Date:2/8/2016)... Kan. , Feb. 8, 2016 /PRNewswire/ ... organization that formerly specialized in the development ... recently announced that it has divided its ... Capital. While Nueterra Capital will continue the ... services, NueHealth will operate a national system ...
(Date:2/8/2016)... , Feb. 8, 2016  A research team ... scientists has discovered details of how the abnormal breakage ... a particularly aggressive form of acute lymphoblastic leukemia (ALL). ... which genetic mutations trigger overproduction of immature cells, called ... The discoveries of the malfunction underlying the type called ...
Breaking Medicine Technology: