Navigation Links
Software System to Improve the Function of Retinal Implants

Neural computation scientists at Bonn University have created a software system that is hoped to improve the function of retinal implants significantly. //With the aid of the software, the visual prosthesis "learns" to generate exactly those signals, which are expected and can be interpreted by the brain.

Nearly two dozens of patients in Germany and the U.S. have so far been implanted with a visual prosthesis. For this purpose, clinicians open the eye ball and attach a thin foil at the retina. Small protruding contacts reach neurons, which form the ganglion cell layer of the retina. These electrical stimulation contacts feed camera signals into the optic nerve. The camera may be attached to a frame of glasses and transmits its signals in a wireless fashion to the implant.

Currently, the results do not meet the high expectations. "The camera generates electrical signals, which are almost useless for the brain," comments Rolf Eckmiller, a professor at the Department of Computer Science at Bonn University. "Our own system translates the camera signals into a language, which the central visual system in the brain understands". Unfortunately, the central visual system of each individual speaks a different dialect; this poses a difficulty for the translator function. For this reason, the computer- and neural scientist developed the "Retina Encoder" together with his graduate students Oliver Baruth and Rolf Schatten. At the Hanover Fair he is looking for commercial partners for the next step into clinical trials.

"In principle, the Retina Encoder is a computer program that converts the camera signals and forwards them to the retinal implant," explains Oliver Baruth the function. "The encoder learns in a continuous process how to change the camera output signal so that the respective patient can perceive the image." Currently, tests of the learning dialog process are being performed with normally sighted volunteers. The camera images are t ranslated by the Retina Encoder and subsequently forwarded to a kind of "virtual central visual system." This simulation mimics the brain function for the interpretation of the converted camera data.

Initially, the Retina Encoder does not know which language the virtual central visual system speaks. Therefore the software translates the original picture - for example a ring - in different, randomly selected "dialects". This way, variations of the picture emerge, which are more or less similar to a ring. The volunteer sees these variations on a small screen that is integrated in a frame of glasses. By means of head movements, the person selects those variations that appear most similar to a ring. From these choices, the learning software draws conclusions how to improve the translation. In the next learning cycle, several new picture variations are being presented, which look already more similar to the original: during this process, the Retina Encoder becomes adapted step-by-step to the language of the virtual central visual system. In the current tests it works very well; however, the scientists have not yet tested their system in patients. The scientists emphasize that in principle, the Retina Encoder could be integrated in implanted visual prostheses within a few months.

In normally sighted humans, a kind of natural Retina Encoder is already integrated in the retina: specifically, four layers of nerve cells are positioned in front of the photoreceptor cells. "The retina is a transparent biocomputer," Eckmiller says. "It transforms the electrical signals of rod and cone photoreceptors into a complex signal." This signal reaches the brain via the optic nerve.

In the brain, the complex information is being decoded. The brain acquires the corresponding ability within the first months of life. During this time, the central visual system becomes individually adjusted to the retinal signals: the brain learns how to interpret the data from the optic nerve. In adults, however, who become blind later in life, the central visual system is already matured: it is not able anymore to change easily. "If the central visual system is not as flexible anymore, the artificial retina has to be," Eckmiller points out. “The artificial retina must learn to generate signals that are useful for the brain. And exactly this learning ability distinguishes our Retina Encoder”.

Nevertheless, he warns against too high expectations," Nobody should think that one could read again ones favorite detective stories with a visual prosthesis. One may perhaps be able to recognize the 'Gestalt' of larger objects and to perceive contours; a higher vision quality can not be expected in the near future. However, for a blind subject this represents a major improvement. He will be able to orient himself again in his environment. This gain in independence is our goal!"

Source-Eurekalert
SR
'"/>




Related medicine news :

1. Africa Set to Control Malaria Using Specialized Software
2. India, a Hot Destination? Software or Sex, Indians are the Best!
3. Safe Software A Must For Doctors
4. New Software to Help Patients
5. Software Tools & Fonts in Seven Indian Languages
6. Computer Software Less Reliable Than Radiologists Eyes in Detecting Cancerous Tumors
7. Early Warning System For Breast Cancer
8. Gene connected to Multi-System disorder discovered
9. Reviving the Immune System
10. Painkilling Patch As Effective As Intravenous Delivery Systems
11. Wrestling found To Be Good for the Immune System
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/26/2017)... ... , ... Amir Qureshi, MD is the first physician in Arkansas to implant ... The Nuvectra™ Algovita SCS System has been FDA approved as a treatment option for ... to introduce the most powerful SCS system and the only stretchable lead on the ...
(Date:5/26/2017)... ... May 26, 2017 , ... A new analysis of community health data ... are located in the Midwest. With the average cost of healthcare rising and the ... with both the quality and affordability of where they live. An annual 2017 report ...
(Date:5/26/2017)... ... May 26, 2017 , ... via seating is proud to ... task chair specifically designed for clinical areas. Genie Copper Mesh is a crossover ... Cupron® to provide customers with a game changing chair that is affordably priced,” ...
(Date:5/26/2017)... ... ... After raising nearly $30,000 on Kickstarter , about three-times its original campaign ... crowdfunding price on Indiegogo . , “Along with creating an anti-stress gadget to ... fidget toy to the market that was made of superior quality and wouldn’t break ...
(Date:5/26/2017)... (PRWEB) , ... May 26, 2017 , ... Silver Birch ... community, which is located on more than four acres of land at 5620 Sohl ... , The 103,000 square-foot building includes 125 studio and one-bedroom apartments. Each of ...
Breaking Medicine News(10 mins):
(Date:5/6/2017)... , May 5, 2017   Provista , a proven ... than 200,000 customers, today announced Jim Cunniff as ... of executive and business experience to Provista, including most recently ... in California . He assumed his new ... is a great fit for Provista," says Jody Hatcher ...
(Date:5/4/2017)... Tenn. , May 4, 2017  A ... Infection Control, Ultraviolet-C light as a ... Tru-D SmartUVC,s ability to reduce bioburden on anesthesia ... bioburden reduction on high-touch, complex medical equipment surfaces ... surgical infections. "This study further validates ...
(Date:5/4/2017)... May 4, 2017  A new tight-tolerance microextrusion ... other highly-engineered materials, is being launched by Natvar, ... been developed in recent years to service a ... surgical applications. More expensive materials such as glass ... tubing due to their ability to consistently hold ...
Breaking Medicine Technology: