Navigation Links
Scientists Pursue New Treatment For Asthma Sufferers

Scientists of Cincinnati have found out a new treatment “target” to help millions of asthma sufferers in U.S. The results were reported //following their research on certain white cells in the body that played a major role in the cause of symptoms experienced by asthma patients.

The scientists, at the University of Cincinnati (UC) Academic Health Center and Cincinnati Children’s Hospital Medical Center, report their results in the Oct. 31, 2006, edition of the Proceedings of the National Academy of Sciences.

Working with genetically altered mice; the Cincinnati researchers studied a group of cells called eosinophils. Originally evolved to defend the body against parasite infection, a problem no longer common in the Western world, eosinophils are known to accumulate during allergic responses—and especially in mucous in the lungs of asthma patients.

“Researchers have been looking at the role of eosinophils in asthma for decades,” says research associate and first author Patricia Fulkerson, PhD. “Since people in the Western world don’t have parasites in their guts to the extent they used to, the question is what eosinophils do now?”

“Previous studies linking eosinophils to asthma were done in single models,” Fulkerson explains. “We increased the power of our study by looking at multiple models, and by doing that we show a strong role for eosinophils in mucous production in asthma.”

The researchers, led by Professor Marc Rothenberg, MD, PhD, of UC College of Medicine and Cincinnati Children’s Hospital Medical Center, also showed that eosinophils contribute to the recruitment of the immunity-regulating proteins known as cytokines, a process that allows mucous to accumulate in the lung.

“Previously most scientists looked at one model at a time—eliminating as many eosinophils as possible, inducing each model with asthma, and then watching what happens in an allergic response,” Fulkerson explains. “U sing just one model, however, it’s difficult to determine the role of eosinophils versus that model’s own genetic strategy.”

So instead of a single model, Rothenberg, Fulkerson and their colleagues used three different ones. They studied one mouse model in which eosinophils don’t develop from bone marrow, as they should, and two models in which eosinophils remain in the blood stream instead of rallying into the lung tissue to protect against asthma.

They then looked at the characteristics that all three models had in common so they could attribute any alteration in their appearance (or phenotype) to eosinophils, and not to that particular model’s genetics.

In the absence of eosinophils, the researchers report, they found that allergen-induced mucous production dropped in all models, suggesting that “eosinophils play a big role in mucous production in response to an allergen challenge.”

The researchers also report that eosinophils alter the lungs’ “micro environment” by stimulating production of the signaling cytokines. Involved in triggering the body’s immune defense mechanism to take action against infection, cytokines are responsible for almost all the characteristics of asthma.

“If cytokines are produced in the lungs, you’ll end up with asthma,” says Fulkerson. “But we found in eosinophil-free models that the cytokines that together produce almost all the visible symptoms of asthma—known as IL (Interleukin) 4 and IL 13—were markedly reduced.

Having shown that eosinophils play an important part in mucous production and airway obstruction in asthma, the researchers’ next goal was to determine how they actually do that.

Examination of mouse lung tissue revealed increased genetic activity associated with the characteristics of asthma: mucous, airway obstruction and hyperactivity.

“We took two of these models and looked at changes in gene expression in the lun g caused by eosinophils,” says Fulkerson. “We only picked up the genes that were in common in both models, so we can say the changes were eosinophil dependent versus model dependent.

“So now we have this list of genes that are eosinophil dependent in an experimental animal model and we’re identifying new pathways that have never been attributed to eosinophils before,” Fulkerson adds. “Now we and other researchers will pursue this to learn exactly what eosinophils are doing to those pathways and to see how we can block their contributions to asthma.

Some of these genetic pathways were known to be important in asthma, says Fulkerson, but no one had previously attributed them to eosinophils.

“That’s the exciting part,” she says. “If we can prevent eosinophils from being activated, then perhaps we can develop new targets for treatment. The goal is to find new approaches to asthma, because although we can treat asthma symptoms fairly well, we’re not so good at dealing with the long-term consequences.

“And this doesn’t only involve asthma. There are a lot of other diseases, especially digestive diseases, in which we see high levels of eosinophils that don’t belong there,” Fulkerson says.

Also contributing to the research were Christine Fischetti, Melissa McBride, Lynn Hassman and Simon Hogan, all of Cincinati Children’s.

Source-Eurekalert
SRI
'"/>




Related medicine news :

1. Scientists plan human cloning clinic in the United States
2. Scientists found ancient Human Germ Killer
3. Scientists locate key hormone involved in appetite control
4. Scientists open the book of life
5. Scientists review SARS
6. Scientists crack dengue fever puzzle
7. Scientists push to lower hidden sodium in food
8. Indian Scientists Make Wide-Ranging Analysis And Annotation Of X Chromosome
9. Scientists have found effective brain regions for deep brain stimulation for Parkinson’s
10. Scientists reveal the secrets of sarcasm
11. Scientists Unveil Mechanism Behind Resistance to Severe Malaria
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/5/2016)... ... December 05, 2016 , ... A newly released study ... the reproducibility and accuracy of placing precordial electrodes with little cognitive effort and ... last 60 years, studies have shown that single electrode misplacement is one of ...
(Date:12/4/2016)... , ... December 03, 2016 , ... ... 4 transitions and many more tools allowing FCPX editors to create professional looking ... Film Studios. , Perfect Harmony contains a beautifully designed 3D environment for ...
(Date:12/4/2016)... ... 03, 2016 , ... Penrose Senior Care Auditors® was announced ... evening at the 26th Annual SMU Cox Dallas 100™ Awards Ceremony and Banquet ... for Entrepreneurship. Dallas 100™, co-founded by the Caruth Institute, honors the ingenuity, commitment ...
(Date:12/4/2016)... ... December 04, 2016 , ... Are You Concerned About Mold In Your ... experienced Indoor Air Quality Companies in VA, MD and DC, recently completed its application ... The new mold law in the district of Columbia is a good thing stated ...
(Date:12/2/2016)... ... ... Lori G. Cohen and Sara K. Thompson , shareholders in global law ... 21st Drug & Medical Device Litigation Conference , taking place in New York Dec. ... chairs the firm’s Pharmaceutical, Medical Device & Health Care Litigation Practice and the Trial ...
Breaking Medicine News(10 mins):
(Date:12/2/2016)... Dec. 2, 2016  Eli Lilly and Company (NYSE: ... for 2017 and provide updated financial guidance for 2016 ... a conference call on that day with the investment ... guidance. The conference call will begin at ... can access a live webcast of the conference call ...
(Date:12/2/2016)... Dec. 2, 2016 CVS Health Corporation (NYSE: ... Day in New York City on Thursday, December 15, 2016, beginning at 8:00 ... team will provide an in-depth review of the company,s ... The company will also discuss 2017 earnings guidance during ... of the event will be broadcast simultaneously on the ...
(Date:12/2/2016)... 2016 Lianluo Smart Limited (Nasdaq: ... which develops, markets and sells medical devices and ... and international markets, recently attended the ... New Progress Forum, co-hosted by the Institute of ... , Guangdong Provincial People,s Hospital and Cardiology Department ...
Breaking Medicine Technology: