Navigation Links
Role Of MicroRNAs In Angiogenesis Researched

According to recent research, MicroRNAs are fine targets for future therapies.Researchers belonging to the University of Pennsylvania School of Veterinary //Medicine have demonstrated how microRNA molecules are responsible for the growth of blood vessels in a human colon cancer model. This process, known as angiogenesis, is a result of the ravenous cancer cells using blood vessels to gorge on a steady supply of nutrients and oxygen.

The findings, which appear in the online version of Nature Genetics, suggest that these MicroRNAs might also be a good target for future therapeutics designed to slow the growth of cancer cells.

"These findings also uncover a new role for a well-known cancer-causing gene called MYC," said Andrei Thomas-Tikhonenko, professor in Penn Vet's Department of Pathobiology. "We have discovered that, within a tumor cell, one of the tasks of MYC is to turn loose a particular set of MicroRNAs, which then becomes responsible for promoting the growth of new blood vessels that nourish the tumor."

MicroRNAs are, as the name implies, short strands of RNA. During the last few years, microRNAs have been found to have a significant role in the process by which genes are translated into proteins. Clusters of microRNA have been "caught" associated with messenger RNA, the intermediary molecule that "instructs" the cell's protein-building machinery. In particular, MicroRNAs help determine the life span of messenger RNA and, therefore, how many copies of a protein can be made from a single messenger RNA molecule.

The Penn researchers discovered the role of microRNAs in angiogenesis while studying what makes MYC unique among other cancer-causing genes, or oncogenes. In particular, they were curious why cells with hyperactive MYC don't accumulate particularly fast in Petri dishes yet grow explosively in animal models for the disease.

"There are obviously no blood vessels in a petri dish, so the angiogen ic properties of the MYC gene are not advantageous," said Michael Dews, senior researcher in the Thomas-Tikhonenko lab. "In the incubator, the cancer cells grow at normal rates, but in the mouse model you see them recruiting a lot of blood vessels and really taking off. Curiously, this is not the case with some other oncogenes. So, what makes MYC special?"

The MYC protein is known to have a role in determining how certain genes are transcribed into messenger RNAs. To understand the role of MYC in angiogenesis, the Penn researchers used micro array technology to screen MYC-positive and MYC-negative cancerous cells for the presence or absence of 192 known pro- and anti-angiogenesis molecules. They found that, while MYC did not lead to excessive amounts of pro-angiogenesis molecules, it did seem to depopulate an entire family of anti-angiogenesis molecules related to the so-called thrombospondin-1 protein. MYC effectively disabled the brakes that slow angiogenesis.

The Thomas-Tikhonenko lab had previously demonstrated that MYC decreases the lifespan of the messenger RNA encoding thrombospondin. Since microRNAs had emerged as important regulators of messenger RNA stability, the Penn researchers believed there was a good chance of a MYC-microRNA-thrombospondin connection.

Their long-standing collaborator Chi Dang, a professor at Johns Hopkins University, suggested talking to another Hopkins researcher, Joshua Mendell. Mendell had extensive expertise in microRNA function and just a few months ago teamed up with Dang to identify MYC as an important regulator of microRNAs. The new collaboration between the Thomas-Tikhonenko and Mendell laboratories identified a missing link between MYC and thrombospondin, which indeed turned out to be a microRNA cluster designated miR-17-92. In the key experiment the researchers engineered poorly angiogenic tumor cells to produce copious amounts of miR-17-92. These modified cells, just like cells with hyp eractive MYC from earlier experiments, formed much larger tumors with better blood supplies.

"It has become increasingly clear that microRNAs are abnormally expressed in many types of cancer and select microRNAs have been demonstrated to act as a new type of oncogene," Mendell said. "As such, microRNAs represent an entirely new class of potential targets for cancer therapy." According to Mendell, an "anti-sense" version of miR-17-92 could bind to miR-17-92, thereby canceling its effects. If it is possible to deliver "regular" miR-17-92 to increase angiogenesis, as was demonstrated in the Nature Genetics paper, it may be possible to deliver anti-sense miR-17-92 to decrease angiogenesis and tumor growth.


Related medicine news :

1. MicroRNAs Can Be Tumor Suppressors
2. New Angiogenesis Finding May Help Fight Cancer Growth
3. A Combination Of Drugs Used For Anti-Angiogenesis And Apoptosis More Effective
4. Anti-fungal Drug Block Angiogenesis
5. Causes of Sudden Infant Death Researched
Post Your Comments:

(Date:11/25/2015)... ... November 25, 2015 , ... Bcureful—a non-profit organization devoted to ... raising public awareness of the disorder while helping to bring expert medical care ... to bolster progress at the Tuberous Sclerosis Complex Center at Ann & Robert ...
(Date:11/24/2015)... , ... November 24, 2015 , ... ... to offer their patients the many benefits of the revolutionary BIOLASE WaterLase iPlus ... cutting and scraping tools traditionally used by a dentist in Gettysburg, PA ...
(Date:11/24/2015)... ... 24, 2015 , ... ThirdLove, the fast-growing bra company that ... offering 40% off select bras and underwear styles, now through Saturday, November 28th. ... technology and the latest fashion, quickly becoming the next generation of luxury bras. ...
(Date:11/24/2015)... ... 24, 2015 , ... Preparing for the LDT Regulation:, CLIA Won’t Satisfy the ... , FDA has long asserted that design and manufacture of Laboratory Developed Tests ... do not meet the device regulations. , Come up short in an inspection and ...
(Date:11/24/2015)... ... November 24, 2015 , ... United Benefit Advisors (UBA), ... & Company as its newest Partner Firm. Based in Jefferson City, Missouri, their ... trusted advisor regardless of whether that client is a business, a family, or ...
Breaking Medicine News(10 mins):
(Date:11/25/2015)... , November 25, 2015 ... Investors"), pursuant to which BioLight and the New Investors ... Ltd. subsidiary ("IOPtima") via a private placement. The financing ... its innovative IOPtimate™ system used in the treatment of ... pathway process for the IOPtimate™ system with the U.S. ...
(Date:11/25/2015)... 2015 Developmental, commercial, and regulatory/legal ... profitability of pharmaceutical products, says GBI Research ... regulatory/legal strategies all play a key role in boosting ... . --> Developmental, commercial, ... in boosting the profitability of pharmaceutical products, says ...
(Date:11/25/2015)... Research and Markets ( ) has ... Global Forecast to 2020" report to their offering. ... 37.21% of the total market share in 2014. The ... is projected to growth at the highest CAGR between ... to the fast growing water, industrial gas treatment, pharmaceutical, ...
Breaking Medicine Technology: