Navigation Links
Radical Idea of Implanting Tiny Electrodes to the Deaf

Scientists pursued the idea of implanting tiny electronic hearing devices in the inner ear to help profoundly deaf people. An alternative that promised superior results was implanting a device directly in the auditory nerve.

Now, however, scientists have shown in animals that its possible to implant a tiny, ultra-thin electrode array in the auditory nerve that can successfully transmit a wide range of sounds to the brain. The studies took place at the University of Michigan Kresge Hearing Research Institute.

If the idea pans out in further animal and human studies, profoundly and severely deaf people would have another option that could allow them to hear low-pitched sounds common in speech, converse in a noisy room, identify high and low voices, and appreciate music areas where cochlea implants, though a boon, have significant limitations.

In nearly every measure, these work better than cochlear implants, says U-M researcher John C. Middlebrooks. He led a study requested by the National Institutes of Health to re-evaluate the potential of auditory nerve implants. Middlebrooks is a U-M Medical School professor of otolaryngology and biomedical engineering. He collaborated with Russell L. Snyder of the University of California, San Francisco and Utah State University.

The possible auditory nerve implants likely would be suitable for the same people who are candidates today for cochlear implants: the profoundly deaf, who cant hear at all, and the severely deaf, whose hearing ability is greatly reduced. Also, the animal studies suggest that implantation of the devices has little impact on normal hearing, offering the possibility of restoring sensitivity to high frequencies while preserving remaining low-frequency hearing.

Middlebrooks says its possible that the low power requirements of the auditory nerve implants might lead to development of totally implantable devices. That would be an improvement over the external speech processor and battery pack cochlear implant users need to wear and often have to recharge daily.

If the initial success in animals is borne out in further tests, a human auditory nerve implant is probably five to 10 years away, he says.

The researchers used cats bred for laboratory use in their experiments. They measured brain processing of auditory signals in normal conditions, then compared deaf animals brain responses to sounds using cochlear implants and then the direct auditory nerve implants. These measurements employed neuron -monitoring technology developed earlier at U-M. The scientists found their sensitive 16-electrode microarray resulted in several advantages over cochlear implants.

Approved by the Food and Drug Administration in 1984, cochlear implants have greatly benefited profoundly and severely deaf people. More than 100,000 implants have been performed worldwide in the last two decades, including more than 1,000 at U-M.

Like the new device, cochlear implants are small electrode arrays that receive signals from an external sound processor. They are designed to stimulate the auditory nerve and other cells to produce a sensation of hearing. But their location, separated from auditory nerve fibers by fluid and a bony wall, is a limitation.

Access to specific nerve fibers is blunted, Middlebrooks says. The effect is rather like talking to someone through a closed door.With the new intraneural stimulation procedure, that effect is eliminated, and there are other technical advantages, too.

The intimate contact of the array with the nerve fibers achieves more precise activation of fibers signaling specific frequencies, reduced electrical current requirements and dramatically reduced interference among electrodes when they are stimulated simultaneously, Middlebrooks says.

Middlebrooks has talked with U-M surgeons in otolaryngology abou t surgical approaches in humans, and is working with U-M biomedical engineers on an intraneural device that can remain in place and be tested further in animals over the next two years. The devices need to be studied over time to see if they are safely tolerated by the auditory nerve.

If our work continues to go very well, we might begin human trials in no less than five years, Middlebrooks says.Such a device might be used first in people whose cochleas are filled with bone and therefore arent eligible for a cochlear implant, or people whose cochlear implants are no longer effective.

The University of Michigan has submitted a patent application for the procedure. Through its Office of Technology Transfer, it is seeking a commercialization partner to assist in bringing the technology to market.


Related medicine news :

1. Radical Gastric Bypass Surgery Heightens the Effects of Alcohol
2. Implanting Electrodes in the Brain Could Help Treat Severe Depression
Post Your Comments:

(Date:10/13/2015)... ... , ... Symposium Chairman, Dr. Rod J. Rohrich is pleased to announce that ... March 2nd and 3rd, 2016. The annual meeting, along with the Dallas Rhinoplasty ... around the world. , Key topics at this year's event will include discussions on ...
(Date:10/13/2015)... ... October 13, 2015 , ... Relay (, a ... announced today a significant contract that will provide its award-winning private messaging solution ... on the growing success of its Relay program, IBX Wire™, which now has ...
(Date:10/13/2015)... ... October 13, 2015 , ... NavaFit Inc. today announced the launch of ... train with, participate in local fitness & sporting events, and stay motivated. ... high medical costs drive us to get more serious about fitness and wellness, individuals ...
(Date:10/13/2015)... Boston, MA (PRWEB) , ... October 13, 2015 , ... ... mortar of the body, including muscle, bone, and blood. But how much protein does ... more complicated than it might seem, according to the October 2015 issue of ...
(Date:10/13/2015)... (PRWEB) , ... October 13, 2015 , ... Scientists in ... tissue biopsy in 18 patients with or without mesothelioma. Surviving Mesothelioma has just posted ... , The doctors from PhenoPath Laboratories in Seattle and the University of British Columbia ...
Breaking Medicine News(10 mins):
(Date:10/13/2015)... , Oct. 13, 2015  Data Science Automation (DSA), ... opening of a new branch office in the ... DSA,s presence in Europe . The decision ... increasing demand for local support of customers in the medical ... Ph.D., DSA,s UK Branch Manager. "We have had tremendous success ...
(Date:10/13/2015)... -- SeraCare Life Sciences, a leading partner to global in ... medicine business unit has launched its second product in ... (NGS)-based tumor profiling assays.  The Seraseq TM Solid ... mutations in key oncogenes and tumor suppressor genes as ... is offered at five additional allele frequencies. ...
(Date:10/13/2015)... , Oct. 13, 2015  Graduate students across ... and medical research, will soon have the opportunity ... care – the drug discovery and development process. ... has collaborated with 10 leaders from academic institutions ... Medicines: The Process of Drug Development."  Lilly will ...
Breaking Medicine Technology: