Navigation Links
PI-103 Effective against Brain Cancer

According to the researchers at the University of California, San Francisco (UCSF) they have identified a class of compounds that prevents the growth of brain cancer. // The compound called the PI-103 acts as a potent drug candidate against lethal brain tumor. In animal studies (mice) with human glioma grafts the drug is found to be potent against proliferating cancer cells. The unique effectiveness of PI-103 stems from its ability to attack two separate steps in the series of signals that trigger the spread of cancer. The dual blockade proved to be a safe and effective inhibitor of cancer cell proliferation in mice with the human tumors, the scientists found.

The glioma research is being published online May 15 by the journal Cancer Cell. A description of the strategy used to identify the molecular level action of the inhibitors was published online by the journal Cell on April 27. Food and Drug Administration approval five years ago of the cancer drug Gleevec marked a promising new strategy against cancer. Gleevec was the first drug on the market designed to block ubiquitous signaling molecules called protein kinases – enzymes known to trigger normal cell proliferation, and in the case of cancer, the growth of tumors.

Another group of kinases, called lipid kinases are now emerging as important new targets, especially PI3 alpha kinase, an enzyme often found to be overactive in brain, breast, colon and stomach cancers. But the sheer number of related kinases – 15 in the PI3 kinase family alone – and uncertainty about how each acts in the body – has stalled progress. Broad spectrum drugs that inhibit many related kinases inevitably cause toxicity and are poor drug candidates. To overcome this hurdle, Kevan Shokat, PhD, a Howard Hughes Medical Institute investigator at UCSF, and Zachary Knight, a postdoctoral fellow in his lab, developed a strategy to systematically inhibit many different but related kinases to identify which ones might be prime t argets to treat brain tumors.

In the Cell paper they described their success synthesizing a panel of different PI3 kinase inhibitors, showing for the first time the structural basis of the inhibitors' abilities to block different PI3 kinases. They used the new compounds to dissect the role of PI3 kinases in insulin signaling and in cancer. Drawing on this new tool, William Weiss, MD, associate professor of neurology at UCSF and an investigator in UCSF's Comprehensive Cancer Center, developed the strategy to treat gliomas. These cancers are the most common solid tumor of childhood, and about half of the people diagnosed with gliomas die within a year of diagnosis. Weiss and his colleagues report in the Cancer Cell paper that one PI3 kinase inhibitor in particular – PI-103 -- is unusually effective against gliomas in mice.

They believe the inhibitor is a promising drug candidate, and a UCSF neuro-oncologist is developing plans to launch a clinical trial within a year, Weiss says. The Weiss team discovered that the inhibitor's effectiveness lies in its dual impact. It inhibits both PI3 kinase and a protein kinase known as mTOR which acts downstream of PI3 kinase and is part of the cell's nutrient-sensing system. Clinical trials using inhibitors of mTOR alone have had disappointing results, Weiss says. One reason appears to be that the two kinases are part of a feedback loop. His group showed that mTOR inhibitors in clinical trials actually activate PI3-kinase while they inhibit mTOR. In effect, the drugs are blocking and encouraging cancer growth at the same time.

The new inhibitor offers a mechanism through which to block both the PI3 and the mTOR kinase pathways, a strategy that appears to be particularly effective at slowing growth of gliomas. Lead author on the Cancer Cell paper is Qi-Wen Fan, MD, PhD, assistant adjunct professor of neurology, in the Weiss lab. Co-authors along with Weiss, Shokat and Knight, all at UCSF, are David Gol denberg, staff research associate in neurology; Wei Yu, PhD, assistant research anatomist; and David Stokoe, PhD, assistant professor in the Cancer Research Institute. Shokat, UCSF professor of cellular and molecular pharmacology, is also a faculty affiliate in QB3, the Institute for Quantitative Biomedical Research.

Source: Eureklert

Related medicine news :

1. New Way to "See" Genes, Evaluate Effectiveness of Gene Therapies Discovered
2. Inhaled Steroids Safe & Effective for Children with Asthma
3. ZD1839 Proves Effective - A Breakthrough in fighting Lung Cancer
4. Fluoride Found Effective in Osteoporosis
5. Aspirin and Warfarin Are Equally Effective for Stroke Prevention
6. Implantable Contact Lens Found Safe and Effective
7. Effective And Economical Agent For Anthrax
8. Stem Cell Transplants May Be Effective For MS Patients
9. Effective therapy for Huntingtons disease
10. Chemotherapy Effective for Bladder Cancer
11. Drug Effective for Vascular Dementia
Post Your Comments:

(Date:11/30/2015)... (PRWEB) , ... November 30, ... ... (AIS) is pleased to announce the speakers for “Value-Based Payer-Provider Partnerships: Three ... learned from three innovative value-based care arrangements: Essentia Health and UCare, MissionPoint ...
(Date:11/30/2015)... ... November 30, 2015 , ... Vasont Systems, a top component ... (VUI) extension unites with Syncro Soft’s latest software update, oXygen XML editor Version ... with the latest release of oXygen® XML editor and the Vasont® CCMS. ...
(Date:11/30/2015)... ... November 30, 2015 , ... Scott Newman MD, FACS ... select few plastic surgeons in the New York City area to utilize the ... world’s first heat-induced laser treatment for fat loss in the abdomen, flanks, and ...
(Date:11/30/2015)... ... November 30, 2015 , ... TransPack Volume 6 features 30 customizable ... from scrolling web-styled transitions to wipes with blur & drop shadow options. Utilize ... Seamlessly transition from one clip to the next with TransPack's easily customizable styles. ...
(Date:11/30/2015)... ... November 30, 2015 , ... ... strategic partnership at the Radiological Society of North America (RSNA) 2015 conference. ... providers of cutting-edge dictation and speech-enabled documentation software, announced their partnership today ...
Breaking Medicine News(10 mins):
(Date:11/30/2015)... iCAD, Inc. (Nasdaq: ICAD ) ... solutions for advanced image analysis and workflow tools ... Radiological Society of North American (RSNA) 2015 Annual ... November 29 to December 4, 2015. The company ... automated breast density assessment solution, PowerLook® Advanced Mammography ...
(Date:11/30/2015)... SALT LAKE CITY , Nov. 30, 2015 ... Systems (NYSE: VAR ) will exhibit a broader array ... meeting of the Radiological Society of North America ... The Varian exhibit at the meeting will feature X-ray components ... Cardinal CT tube, a line of products from Varian,s Claymount ...
(Date:11/30/2015)... Nov. 30, 2015  Novartis will demonstrate the strength ... th American Society of Hematology (ASH) Annual Meeting. ... as well as supportive care, including key findings in ... cell therapies. The ASH Annual Meeting will be held ... Novartis Oncology . "We will be presenting ...
Breaking Medicine Technology: