Navigation Links
New Microchip for Protein Sorting

A new MIT project, reported in the latest Nature Nanotechnology, aims to make Western blotting an old-fashioned technique. //

The microchip system has an extremely tiny sieve structure built into it that can sort through continuous streams of biological fluids and separate proteins accurately by size. Conventional separation methods employ gels, which are slower and more labor-intensive to process. The new microchip system could sort proteins in minutes, as compared to the hours necessary for gel-based systems.

The new technology is an advance from a one-dimensional sieve structure reported by the same MIT group last year. The key to this new advance, called an anisotropic nanofluidic sieving structure, is that the researchers have designed the anisotropic sieve in two orthogonal dimensions (at a right angle), which enables rapid continuous-flow separation of the biological sample. This allows continuous isolation and harvesting of subsets of biomolecules that researchers want to study. And that increases the probability of detecting even the smallest number of molecules in the sample.

"With this technology we can isolate interesting proteins faster and more efficiently. And because it can process such small biologically relevant entities, it has the potential to be used as a generic molecular sieving structure for a more complex, integrated biomolecule preparation and analysis system," said Jongyoon Han, the Karl Van Tassel Associate Professor of Electrical Engineering and associate professor of biological engineering at MIT and head of the MIT team.

Han noted that until the late 1990s, most advances in biological laboratory equipment were aimed at the Human Genome Project and discoveries related to DNA, which are larger molecules compared to proteins. However, because of the vital role proteins play in almost all biological processes, researchers began to focus their attention on proteins. But one obstacle has been the lack o f good laboratory tools with which to prepare biological samples to analyze proteins, said Han, who also has affiliations in MIT's RLE, Computational and Systems Biology Initiative, Center for Materials Science and Engineering and Microsystems Technology Laboratories.

"I shifted my attention from DNA into the area of protein separation around 2002 with the shift to proteomics (the study of proteins)," Han said. "But the field was using decades-old gel electrophoresis technology. There is a big gap in the need for technology in this area."

Han and Fu therefore devised the anisotropic sieve that is embedded into a silicon chip. A biological sample containing different proteins is placed in a sample reservoir above the chip. The sample is then run through the sieve of the chip continuously. The chip is designed with a network of microfluidic channels surrounding the sieve, and the anisotropy (directional property) in the sieve causes proteins of different sizes to follow distinct migration trajectories, leading to efficient continuous-flow separation. The current sieve has an array of nanofluidic filters of about 55 nanometers, or billionths of a meter, wide.

"The proteins to be sorted are forced to take two orthogonal paths. Each path is engineered with different sieving characters. When proteins of different sizes are injected into the sieve under applied electric fields, they will separate into different streams based on size," Han explained. At the bottom of the chip the separated proteins are collected in individual chambers. Scientists then can test the proteins.

While other scientists have used similar continuous flow techniques to separate large molecules like long DNA, the MIT team succeeded with the tinier proteins. "This is the first time physiologically relevant molecules like proteins have been separated in such a manner," said Han. "We can separate the molecules in about a minute with the current device versus hours for gels."

Another advantage of the microchip is that it can have so many different pore sizes, and unlike gels, it is possible to design an exact pore size to increase the separation accuracy. That in turn can help researchers look for so-called biomarkers, or proteins that can reveal that disease is present, and thus help researchers develop diagnostics and treatments for the disease. "Sample preparation is critical in detecting more biomarker signals," said Han

Source-Bio-Bio Technology

Related medicine news :

1. Microchip gives blind a chance of sight
2. Microchip gives blind a chance of sight
3. Lean Protein Could Be Key to Obesity Drugs
4. Evidence Links Protein Damage to Neurodegenerative diseases like Parkinsons and Alzheimers
5. Unravelling the secrets of ‘Huntingtin’ Protein - towards the treatment of ‘Huntingtons’ Disase
6. Unravelling the secrets of ‘Huntingtin’ Protein - towards the treatment of Huntingtins’ Disese
7. Protein in urine foresees heart disease
8. Levels Of Blood Proteins May Help Heart Disease Care
9. Protein signals need for heart surgery
10. Protein and fat improve memory
11. Clotting Protein plays a role in nerve repair
Post Your Comments:

(Date:11/26/2015)... ... ... Jobs in hospital medical laboratories and in the imaging field lead the many ... Medical Group . These fields, as well as travel nursing, ranked at ... through the company’s website, , The leading healthcare staffing agency released ...
(Date:11/26/2015)... (PRWEB) , ... November 26, 2015 , ... Indosoft Inc., ... inclusion of an application server to improve system efficiency and reliability. , The new ... many of these standards, the system avoids locking itself into a specific piece of ...
(Date:11/25/2015)... ... November 25, 2015 , ... ... recognized once again for its stellar workplace culture with the company’s Cincinnati office ... , Medical Solutions’ Cincinnati office was named a finalist in Cincinnati Business Courier’s ...
(Date:11/25/2015)... Friendswood, TX (PRWEB) , ... November 25, 2015 , ... ... through the companies’ “ Two Organizations, One Beat ” campaign. The partnership between the ... its services to aid in MAP International’s cause. , MAP International was founded in ...
(Date:11/25/2015)... Raton, Florida (PRWEB) , ... November 25, 2015 ... ... diagnostic testing for physicians and athletic programs, launches new Wimbledon Athletics ... importance of testing young athletes for unsuspected cardiac abnormalities. About 2,000 people under ...
Breaking Medicine News(10 mins):
(Date:11/26/2015)... 26 november 2015 AAIPharma Services ... geplande investering aan van ten minste $15,8 ... en het mondiale hoofdkantoor in ... resulteren in extra kantoorruimte en extra capaciteit ... groeiende behoeften van de farmaceutische en biotechnologische ...
(Date:11/26/2015)... , Nov. 26, 2015 Research and Markets ( ... Pacific Cardiac Pacemaker Market Outlook to 2019 - Rise in ... Demand " report to their offering. ... Boston scientific and others. ... including Medtronic, Biotronik, Boston scientific and ...
(Date:11/26/2015)... DUBLIN , November 26, 2015 ... has announced the addition of the  ... in the Global Cell Surface Testing ... Opportunities" report to their offering.  ... the addition of the  "2016 Future ...
Breaking Medicine Technology: