Navigation Links
New Computed Imaging Technique Uses Hazy Images to Improve View

X-ray imaging,Researchers at the University of Illinois at Urbana-Champaign have come out with a novel computational image-forming method // that is used for optical microscopy, which is capable of generating clear, three-dimensional images from hazy and unclear data.

The technique, named Interferometric Synthetic Aperture Microscopy, ISAM is beneficial to optical microscopy, just the same way ‘magnetic resonance imaging’ is to nuclear magnetic resonance, and what computed tomography did for X-ray imaging, the scientists say.

"ISAM can perform high-speed, micron-scale, cross-sectional imaging without the need for time-consuming processing, sectioning and staining of resected tissue," said Stephen Boppart, a professor of electrical and computer engineering, of bioengineering, and of medicine at the U. of I., and corresponding author of a paper accepted for publication in the journal Nature Physics, and posted on its Web site.

Developed by postdoctoral research associate and lead author Tyler Ralston, research scientist Daniel Marks, electrical and computer engineering professor P. Scott Carney, and Boppart, the imaging technique utilizes a broad-spectrum light source and a spectral interferometer to obtain high-resolution, reconstructed images from the optical signals based on an understanding of the physics of light-scattering within the sample.

"ISAM has the potential to broadly impact real-time, three-dimensional microscopy and analysis in the fields of cell and tumor biology, as well as in clinical diagnosis where imaging is preferable to biopsy," said Boppart, who is also a physician and founding director of the Mills Breast Cancer Institute at Carle Foundation Hospital in Urbana, Ill.

While other methods of three-dimensional optical microscopy require the instrument's focal plane to be scanned through the region of interest, ISAM works by utilizing light from the out-of-focus image planes, Ralston sa id. "Although most of the image planes are blurry, ISAM descrambles the light to produce a fully focused, three-dimensional image."

ISAM effectively extends the region of the image that is in focus, using information that was discarded in the past.

"We have demonstrated that the discarded information can be computationally reconstructed to quickly create the desired image," Marks said. "We are now applying the technique to various microscopy methods used in biological imaging."

In their paper, the researchers demonstrate the usefulness of computed image reconstruction on both phantom tissue and on excised human breast-tumor tissue.

"ISAM can assist doctors by providing faster diagnostic information, and by facilitating the further development of image-guided surgery," Boppart said. "Using ISAM, it may be possible to perform micron-scale imaging over large volumes of tissue rather than resecting large volumes of tissue."

The versatile imaging technique can be applied to existing hardware with only minor modifications.



Source-Eurekalert
SA
'"/>




Related medicine news :

1. Predicting Severity Of Appendicitis With Computed Tomography
2. Imaging Modality That Might Help Diagnose Depression
3. Being Obese Increases Ones Risk Of A wrong Diagnosis During Medical Imaging
4. Optical Imaging Added To Ultrasound To Improve Imaging Of Breast Cancer
5. Using Eyes As The Line Of Reference For Fetal Brain Imaging
6. Three In One Ultrasound Probe For 3-D Imaging Of Heart And Tissue Destruction Developed
7. New Computerized Imaging Systems Help In Better Dental Treatment Planning
8. Magnetic Resonance Imaging Can Now Be Used For Mind Reading
9. New Cardiac Angiography Technique For Improved Imaging Of Coronary Veins
10. Brain Is More Active While Hiding The Truth, Reveals fMRI Imaging
11. 3-D Imaging For Monitoring Reactor Systems, Power Plants
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/25/2016)... CA (PRWEB) , ... June 25, 2016 , ... As ... with Magna Cum Laude and his M.D from the David Geffen School of Medicine ... and returned to Los Angeles to complete his fellowship in hematology/oncology at the UCLA-Olive ...
(Date:6/25/2016)... ... June 25, 2016 , ... On Friday, June 10, ... Bronze Wellness at Work award to iHire in recognition of their exemplary accomplishments in ... the 7th annual Maryland Workplace Health & Wellness Symposium at the BWI Marriott in ...
(Date:6/24/2016)... Angeles, CA (PRWEB) , ... June 24, 2016 , ... ... surgery procedures that most people are unfamiliar with. The article goes on to state ... procedures, but also many of these less common operations such as calf and cheek ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... June 19, ... the dangers associated with chronic pain and the benefits of holistic treatments, Serenity ... who are suffering with Sickle Cell Disease. , Sickle Cell Disease (SCD) is a ...
(Date:6/24/2016)... ... June 24, 2016 , ... The Pulmonary Hypertension Association ... it will receive two significant new grants to support its work to advance ... 25th anniversary by recognizing patients, medical professionals and scientists for their work in ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... Research and Markets has announced the addition of ... report to their offering. ... The World Market for Companion Diagnostics covers the world market ... the report includes the following: , World ... Region (N. America, EU, ROW), 2015-2020 , World IVD ...
(Date:6/24/2016)... Mass. , June 24, 2016   Pulmatrix, ... pharmaceutical company developing innovative inhaled drugs, announced today that ... Russell Investments reconstituted its comprehensive set of ... "This is an important milestone for Pulmatrix," ... will increase shareholder awareness of our progress in developing ...
(Date:6/24/2016)... , June 24, 2016  Arkis BioSciences, a ... invasive and more durable cerebrospinal fluid treatments, today ... The Series-A funding is led by Innova Memphis, ... and other private investors.  Arkis, new financing will ... and the market release of its in-licensed Endexo® ...
Breaking Medicine Technology: