Navigation Links
Mutant Parasites, Unable to Infect Hosts, Highlight Virulence Genes

MADISON - With a single approach, microbiologists at the University of Wisconsin-Madison have identified dozens of clues to how human parasites may infect their hosts .

The researchers identified nearly 40 genes that, when mutated in the common parasite Toxoplasma gondii, prevented the parasite from forming an infection in the brains of mice. These potential "virulence factors" offer a smorgasbord of promising targets for developing drugs that could block or treat human parasitic infections such as malaria.

The new results are reported online this week in the Proceedings of the National Academy of Sciences. Though a larger problem in the developing world, parasitic infections are not uncommon in the U.S.

For example, Toxoplasma can infect any warm-blooded animal and is most commonly acquired from improperly cooked meat or by handling feces from infected cats. Pregnant women and people with weakened immune systems are at greatest risk from Toxoplasma infection, which can cause brain damage and death in unborn children and immune-compromised patients, such as AIDS patients.

Despite this, little is known about the factors that regulate parasites' abilities to infect their hosts, says Laura Knoll, professor of medical microbiology and immunology in the UW-Madison School of Medicine and Public Health and UW-Madison Waisman Center.

To study the question, Knoll and her colleagues at UW-Madison and the New York Medical College cast a wide net. Rather than analyze a single gene at a time for a role in virulence, they took the reverse approach, randomly mutating individual genes in the parasites, then looking to see which of the mutant parasites could no longer infect host brains.

"Let's let the parasite tell us what's important," Knoll says. The broad approach helped them uncover dozens of genes - many of them previously unknown - that may provide new clues about how parasites like Toxoplasma and those that cause malaria, African sleeping sickness and water-borne diarrheal illnesses infect their hosts.

"This screen highlighted genes not previously seen as virulence factors," says Knoll. From one mutant, Knoll's team pinpointed a gene that acts as a nuclear traffic cop, directing molecular traffic in and out of the parasite's nucleus, where the DNA resides. Mutations in the gene, called RCC1 (Regulator of Chromosome Condensation 1), disrupt the flow of molecules, causing a trafficking breakdown that likely underlies the mutant parasite's inability to effectively sicken its host.

This study is the first evidence that this type of cellular function, called nuclear trafficking, may be important for infectivity, Knoll says.

"We hope to apply what we've learned here to other parasites," she says. "Our goal is to come up with new anti-parasitic drug targets." Currently, she says, there are few good treatments for most human parasitic infections, and even some of those are very toxic to patients.

RCC1 presents a promising potential target because the parasite versions of the gene are very different from human and other animal versions, which reduces the likelihood of toxic side effects.


'"/>




Related medicine news :

1. Mutant sperm beat out healthy brethren in study
2. Striking a Gold Mine: H5N1 Vaccine may Serve as an Antidote for Mutants and Variants
3. New Drugs To Combat Mutant Bugs
4. Gene Transfer Using Mutant Form of Good Cholesterol Cuts Vascular Plaque and Inflammation
5. Chronic Kidney Disease Related To Mutant Gene
6. Sex Health Clinics Unable To Meet Increasing Demand
7. Patients With Filariasis More Prone To HIV Infection
8. Infection linked with heart attack
9. Link Between Infection And Heart Disease
10. Supplements for Ear Infections
11. Once-Daily Cipro(R) XR for Treating Complicated Urinary Tract Infections
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:7/25/2017)... ... 25, 2017 , ... Dr. Donna Bergman, professor of education ... published an article in the medical science journal Physical Medicine and Rehabilitation titled ... and the research that helped produce it, were written and conducted in collaboration ...
(Date:7/25/2017)... ... July 25, 2017 , ... Dr. Gina ... Negrette has more than a decade of experience in psychiatry, treating clients in ... fighting addictions, eating disorders, psychotic and manic conditions, as well as those who ...
(Date:7/25/2017)... , ... July 25, 2017 , ... ... for its Product Innovation in the prestigious CEO World Awards®. The coveted annual ... new products and services, CEO case studies, corporate social responsibility, and milestones from ...
(Date:7/24/2017)... ... July 24, 2017 , ... Engineers at the University of Maryland have invented ... kind of electrical energy that the body uses. , In ordinary batteries the ... of electrons out of the battery is generated by moving positive ions from one ...
(Date:7/24/2017)... ... July 24, 2017 , ... Cheerag D. Upadhyaya , M.D., ... Bloch Neuroscience Institute (SLMBNI), part of Saint Luke’s Health System . Dr. ... Cheerag D. Upadhyaya, MD. M.Sc., FAANS joins Stanley P. Fisher, M.D., who ...
Breaking Medicine News(10 mins):
(Date:7/13/2017)... 2017  New York City-based market research firm Kalorama Information ... aware of.  From new products to new costs, to the ... recently completed study, Potential Pipeline Disruptors . ... 1.  Age-Driven Growth - True Impact Moment Arriving ... the impact the growing population and, to a more extreme ...
(Date:7/12/2017)... , July 12, 2017  Eli Lilly and Company (NYSE: ... with generic companies to resolve pending patent litigation in the ... Virginia regarding the Cialis ® (tadalafil) unit ... April 26, 2020. As part of the agreement, Cialis exclusivity ... 27, 2018. "The unit dose patent for Cialis ...
(Date:7/11/2017)... , July 11, 2017  Bayer has awarded grants totaling ... as part of its prestigious Bayer Hemophilia Awards Program (BHAP). ... Philadelphia and Uniformed Services University of ... among the winners. Grant recipients were announced last night during ... (ISTH) 2017 Congress, Berlin, Germany . ...
Breaking Medicine Technology: