Navigation Links
Genetic 'Roadmap' Charts Links Between Drugs and Human Disease

A research team led by scientists at the Broad Institute of MIT and Harvard announced today the development of a new kind of genetic “roadmap” that can connect human diseases// with potential drugs to treat them, as well as predict how new drugs work in human cells. Called the 'Connectivity Map,' the new tool and its uses are described in the September 29 issue of Science and in separate publications in the September 28 immediate early edition of Cancer Cell. The three papers show the map’s ability to accurately predict the molecular actions of novel therapeutic compounds and to suggest ways that existing drugs can be newly applied to treat diseases such as cancer. Based on the results, the papers propose a public project to expand this initial human Connectivity Map — in the spirit of the Human Genome Project — to accelerate the search for new drugs to treat disease.

'The Connectivity Map works much like a Google search to discover connections among drugs and diseases,' said senior author Todd Golub, the director of the Broad Institute’s Cancer program, an investigator at the Dana-Farber Cancer Institute, an associate professor of pediatrics at Harvard Medical School, and an investigator at the Howard Hughes Medical Institute. 'These connections are notoriously difficult to find in part because drugs and diseases are characterized in completely different scientific languages.'

A key challenge in biomedicine is to connect each human disease with drugs that effectively treat it and to understand the molecular basis for such drugs’ effects. To solve this problem systematically, the scientists described the effects of drugs and diseases in the common language of 'genomic signatures,' meaning the full complement of genes that the drugs turn on and off.

To create a first-generation Connectivity Map, the scientists measured the genomic signatures of more than 160 drugs and other biologically active compounds. They next developed a compu ter program to compare the signatures of the drugs with each other and also with the signatures seen in diseases. Using the Connectivity Map, the scientists were able to discover the mechanisms underlying a novel drug candidate for prostate cancer, and that a drug currently used to treat one disease may be useful in another.

'This is a powerful discovery tool for the scientific community,' said Justin Lamb, the lead author of the Science paper and a senior scientist in the Broad Institute’s Cancer program. 'By analyzing just a small fraction of available drugs, we have already confirmed several biological connections between drugs and human disease, and made entirely new ones, too.'

Like other scientific databases, the true value of the Connectivity Map lies in its capacity to be queried by nearly any researcher with a computer. The genomic signature of a particular human disease, drug or other biological response of interest serves as the search 'word' and potential functional connections are revealed through a rank-ordered list of reference compounds in the database that have matching signatures.

One of the surprising results to emerge from the Connectivity Map involves gedunin, a plant derivative that, despite a long history of medicinal use, is not well understood molecularly. The researchers identified gedunin in a high-throughput chemical screen for molecules that disrupt hormone signals in prostate cancer cells and then used the Connectivity Map to help uncover its precise molecular action. As confirmed through additional work, gedunin disrupts a key quality control mechanism in the cell.

Another key finding suggests a new way to overcome drug resistance in cancer. Using the Connectivity Map, a scientific team led by Scott Armstrong, an assistant professor at Harvard Medical School and Children’s Hospital Boston and an investigator at the Dana-Farber Cancer Institute, identified the FDA-approved immunosuppressan t drug, sirolimus (also known as 'rapamycin'), as a therapeutic candidate for overcoming drug resistance in a form of human leukemia. These findings, as well as those for gedunin, are described in Science and in separate Cancer Cell publications.

'Although this first version of the Connectivity Map is limited mainly to drugs, the same concepts could be applied universally across all facets of human biology.' said Eric Lander, an author of the Science paper and the director of the Broad Institute. 'Expanding this initial map to encompass all aspects of human biology would provide a valuable public resource for the scientific community. Such an effort would parallel the sequencing of the human genome, both in its scope and in its potential to accelerate the pace of biomedical research.'

Source-Newswise SRM
'"/>




Related medicine news :

1. Genetic Dentistry: Your Dentist may be able to grow you a new set of Teeth.
2. Genetic influence in menopause
3. Genetics and cholesterol levels
4. Genetics helps in attacking cancer
5. Genetic disorder related with sleep patterns
6. Genetic innovation
7. Genetic tests for cancer
8. Genetic indicates memory
9. Genetic mutation to the fountain of youth discovered
10. Genetic differences found between Male and Female brains
11. Alcoholism Influenced By Both Genetics & Family Environment
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/6/2016)... ... 06, 2016 , ... The Behavioral Health Center of Excellence ... organization as a top behavioral service provider in the country. The award celebrates ... satisfaction and qualifications, and consumer satisfaction. These areas are measured via a wide-ranging ...
(Date:12/6/2016)... ... December 06, 2016 , ... Experimentation involving human stem ... largely due to its potential for revolutionizing human disease treatment. There are multiple ... pluripotent stem cells (hiPSCs). , Both platforms have distinct advantages and disadvantages, ...
(Date:12/6/2016)... ... 06, 2016 , ... METTLER TOLEDO has launched its online ... white papers, guides, handbooks, case studies, magazines, webinars, videos, catalogs, brochures, datasheets, user ... documents, webinars and videos available online, visit the METTLER TOLEDO Expertise Library ...
(Date:12/6/2016)... ... ... 'Tis the season for family, festivity, food and fun! Temptation abounds, and ... eating healthy, staying active, and taking medication and doing daily foot health checks (a ... "Shopping trips, parties and family gatherings can take their toll on our feet during ...
(Date:12/6/2016)... B.C., Canada (PRWEB) , ... December 06, 2016 ... ... (STC) announce the availability of the newly updated International Audit Protocol Consortium (IAPC) ... use IAPC EHS audit protocols to understand the scope of their EHS regulatory ...
Breaking Medicine News(10 mins):
(Date:12/5/2016)... , Nov. 29, 2016 Several leading Alzheimer,s ... Accera, Inc. at 11 a.m. EST on ... Conference on Clinical Trials for Alzheimer,s Disease (CTAD). The ... in Alzheimer,s disease and therapeutic targets that address deficient ... "Following the recent failure of another therapy targeting the ...
(Date:12/5/2016)... , Dec 5, 2016 Research ... Market by Product (Instruments, Consumables), Application (Biomedical & Biochemical Research, Disease ... - Global Forecasts to 2021" report to their offering. ... , , ... USD 730.7 Million in 2021 from USD 574.8 Million in 2016, ...
(Date:12/5/2016)... PUNE, India , December 5, 2016 ... Market by Product Type and by Application - Global Opportunity Analysis and Industry ... in 2015, and is expected to reach $5,255 million by 2022, growing at ... market in 2015 with more than four-fifths share. ... ...
Breaking Medicine Technology: