Navigation Links
Gene Behind Lincoln’s Diseas

Nerve cells possess a protein that keeps nerve fibers flexible and a gene is responsible for the synthesis of this special type of protein, according to a study//.

A University of Utah study found that when the gene was disabled in tiny nematode worms, their nerve cells literally broke.

The discovery may provide a new explanation for spinocerebellar ataxia type 5 (SCA5), a disease previously tied to a human version of the gene and identified in 11 generations of U.S. President Abraham Lincoln's family, starting with his paternal grandparents. SCA5 may have afflicted Lincoln himself. The new study suggests how.

"Were Lincoln's nerves shattered? We don't know. But our study raises the possibility that they were," says biology Professor Michael Bastiani, the study's senior author and a member of the Brain Institute at the University of Utah.

The study involved a worm gene named unc-70 that makes a protein named beta spectrin. Humans have four beta spectrin genes, and mutations in one of them was identified previously as the cause of SCA5, a neurodegenerative disease that develops between ages 10 and 68; destroys nerve cells in the part of the brain that controls movements; causes loss of coordination in walking, speaking, writing and swallowing; and puts some patients in wheelchairs.

Earlier research showed beta spectrin makes red blood cells flexible so they don't burst, and that people with a beta spectrin mutation suffer a form of anemia.

The Utah biologists showed in nematode worms, frequently used as genetic stand-ins for humans, that loss of beta spectrin leaves neurons (nerve cells) prone to breakage. They found the microscopic protein acts like a tiny Slinky spring toy within the coating of nerve cells, giving them strength.

When 1-millimeter-long nematode worms were bred with the mutant gene, they lacked beta spectrin, resulting in breakage of their nerve cells' axons, the l ong, wire-like extensions that connect nerve cells. The worms suffered increasing paralysis, and then died.

"It's incredible and so very simple that this one protein is what keeps neurons from breaking in your body," Bastiani says. "The entire functioning of the nervous system depends on these wire-like axons between nerve cells."

Jorgensen says the mutant gene also may be involved in other neurodegenerative diseases and in brain damage that results from stroke or sports injuries.

"In the late stages of a variety of neurodegenerative diseases, you get irreversible nerve cell loss, and it's possible that is due to loss of this springy protein and nerve elasticity," says study co-author Marc Hammarlund, a University of Utah postdoctoral researcher in biology and HHMI research associate.

That means protecting spectrin in nerve cells potentially could serve as a treatment to slow progression of some neurodegenerative diseases, he adds.

Last year, University of Minnesota researchers reported they examined 299 living descendants of the Lincoln family and found the mutant beta spectrin gene in 125 of them, and 90 already had symptoms of what family members call "Lincoln's disease."

Those researchers reported there was a one-in-four chance the 16th president had spinocerebellar ataxia type 5. They cited a journalist's 1861 description of the tall, lanky Lincoln's "shambling, loose, irregular, almost unsteady gait."

Jorgensen says Lincoln who was born in 1809 and became president in 1861 may have had early-stage SCA5 that had not progressed much by the time he was assassinated in 1865 at age 56.

Most of a nerve cell's length is the thin, wire-like axon. A typical axon's diameter is about 5 microns in humans, or one-twentieth the thickness of a human hair. Every movement we make "puts stress on neurons," Bastiani says. Yet the thin axons do not break.

In the new study, the Utah biologists used mutant nematode worms lacking beta spectrin. The study focused on how the protein's absence affected axons, which carry nerve signals away from the nerve cell "body" and toward the synapse( the junction with another nerve cell).

The researchers used microscopes to photograph nerve-cell axons by inserting a jellyfish gene into the worms to make the worms' neurons glow fluorescent green.

The neurons were examined at three stages: as embryos, just after the worms hatched and at one day of age. The worms and their nerve cells still were growing during the first two stages.

It was found the nerves did not break in younger worms,so beta spectrin is not required for normal nerve growth and development, but is needed for preventing breakage of mature neurons, Hammarlund says.

In another experiment, the biologists paralyzed the worms by disabling two genes needed for muscles to contract. "In paralyzed worms, the axons do not break, even in the absence of spectrin, which says it is movement that causes the nerve cells to break, rather than continued growth of the animal," Jorgensen says.

That means beta spectrin normally prevents breakage by protecting neurons from the strain of movement, and not by helping add new membrane to a growing nerve cell.

"Everybody focuses on the synapse or the cell body as to where the action is," he says. "But if you break the wire or axon, the neuron doesn't work anymore. It's sort of the weakest link in the process."

Source-Eurekalert
PRI
'"/>




Related medicine news :

1. The Logic Behind The Spread Of SARS
2. Understanding The Mystery Behind Sleepless Nights
3. Scientists Unveil Mechanism Behind Resistance to Severe Malaria
4. Researchers Find Out The Cause Of Immune Attacks Behind Hearing Loss
5. Molecule Behind Multiple Sclerosis Discovered
6. Annual Dental Checkups in Children Lagging Behind
7. Mystery Behind The Déjà Vu Phenomenon Yet To Be Resolvd
8. NHS Says Government Advice Behind Refusal of Cancer Drug
9. Know The Brain Behind The Human Growth Hormone!
10. Vital Facts of Short Term Diets - Catch The Vitamin Behind An Ample Waist!
11. The Secret Behind Extension of Earthly Life
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/29/2016)... ... April 29, 2016 , ... ... Celiac Association (CCA), is pleased to announce the launch of the GFCP ... articles, recipes, and more. The purpose of the GFCP Scoop site ...
(Date:4/29/2016)... ... April 29, 2016 , ... New York City based oral and maxillofacial surgeon Dr. ... very effective way to treat obstructive sleep apnea. Dr. Jamali is proud to offer this ... procedure that involves one or both jaw bones. This surgery is performed to correct the ...
(Date:4/29/2016)... ... April 29, 2016 , ... Jvion, the ... of funding led by Eastside Partners, with participation from existing investor Martin Ventures. ... base and accelerate its technology and product roadmap. , “Jvion is ...
(Date:4/29/2016)... ... April 29, 2016 , ... CURE ... entirely on patients with cancer, today announced that Lynne Malestic, RN, of Eisenhower ... 2016 CURE® Extraordinary Healer® for Oncology Nursing , which honors nurses who have ...
(Date:4/29/2016)... , ... April 29, 2016 , ... ... to promote their animal line of probiotics, Petbiotics ™, as they fondly ... turnout of animal rescue groups networking for their non-profit organizations. Animal rescues across ...
Breaking Medicine News(10 mins):
(Date:4/28/2016)... 28, 2016  While Abbott,s announced purchase of ... valve repair and stent business, healthcare research firm ... more firmly into patient monitoring.  Kalorama said that ... device areas, with double-digit growth expected the next ... Advanced Remote Patient Monitoring . Abbott Laboratories ...
(Date:4/28/2016)... 28, 2016 ... Phillips und Stephen Schmidt ... ArisGlobal®, ein führender Anbieter cloudbasierter Softwarelösungen ... bekannt, dass neue Führungskräfte zum Team Sicherheit ... die vielfältige Erfahrungen mitbringen.  Dies wird die ...
(Date:4/28/2016)... April 28, 2016 , Net Sales of ... basis over the prior year period, and an increase of ... , Diluted EPS for the first quarter were $0.52 reported, ... $2.00 adjusted, an increase of 29.9% over the prior year ... adjusted earnings guidance for 2016 Zimmer Biomet Holdings, ...
Breaking Medicine Technology: