Navigation Links
Fibrinogen may Inhibit Spinal Cord Regeneration

Fibrinogen, a blood-clotting protein found in circulating blood, has been found to inhibit the growth of central nervous system neuronal cells , a process that is necessary for the regeneration of the spinal cord after traumatic injury.

The findings by researchers at the University of California, San Diego (UCSD) School of Medicine, may explain why the human body is unable to repair itself after most spinal cord injuries.

The study, led by Katerina Akassoglou, Ph.D., assistant professor in UCSDs Department of Pharmacology, is the first evidence that when blood leaks into the nervous system, the blood protein contributes to the neurons inability to repair themselves.

The findings, which show the molecular link between vascular and neuronal damage during injury to the central nervous system, was published in the online issue of the Proceedings of the National Academy of Sciences on July 2.

The research team studied three types of spinal cord injuries in mice and rats which resulted in cellular and vascular damage, and leakage of fibrinogen from the blood vessels.

Once injured, neurons cannot be repaired because of various inhibitors that are present in the brain and the spinal cord after damage, which results in a patients paralysis. The researchers were surprised at the massive deposits of fibrinogen found at the sites of injury. That discovery led them to investigate the proteins effect on neuronal cells ability to regenerate.

Our study shows that fibrinogen directly affects neurons by inhibiting their ability for repair, said Akassoglou. Fibrinogen contained in the blood which leaks at the site of injury begins the process of inhibiting axonal growth by binding to the beta 3 integrin receptor.

This binding, in turn, induces the activation of another receptor on the neuronal cells, called the epidermal growth factor receptor. When the second receptor is activated, it inhibits the axonal growth. Other inhibitors have been identified that use the same epidermal growth factor receptor, but this is the first blood-derived inhibitor that has been found.

The discovery may open the door to a possible strategy to improving recovery after spinal cord injury by discovering a way to block activation of neuronal receptors by fibrinogen.

Identifying the specific inhibitors that impede the repair process could provide ways to regenerate and connect the damaged nerves and initiate recovery from paralysis after spinal cord injury.

Inhibiting the damaging effects of fibrinogen on neurons may potentially facilitate repair in the nervous system after injury said Akassoglou.

A similar mechanism could be at work in other neurological diseases that result in paralysis, such as multiple sclerosis or hemorrhagic stroke, where blood vessels break and bleed into the brain. She added that such a therapeutic approach wouldnt interfere with fibrinogens essential role in coagulation, because its blood-clotting mechanism depends on binding with a different receptor.


'"/>




Related medicine news :

1. Tomatoes Might Inhibit the Development Of Prostate Cancer
2. Identified Protein To Inhibit Cell Migration
3. Aromatase Inhibitors drug Femara after Tamoxifen therapy protects from breast cancer recurrence
4. Omega 3 Fatty acids (fishy oil) Inhibits Breast Cancer Growth
5. Macrophage Inhibitory Factor Causes Multiple Sclerosis Progression
6. Inhibition of morphine tolerance by spinal melanocortin receptor blockade
7. Sugars Could Contain Key Cancer Inhibiting Compounds
8. Rejuvenation of Stem cells by GSK-3 Inhibitor
9. Anonymity Helps In Overcoming Inhibitions During Online Counseling
10. LipB Protein Inhibitors Help To Fight Against TB
11. Birth Defects Link With ACE Inhibitor Use, FDA Reports
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/13/2016)... ... ... in Sun City is the place to be on March 3rd to learn about the ... be hosting this educational seminar from 5:30 p.m. – 7:00 p.m. Exciting advancements will be ... In addition, prizes will be given away and light refreshments will be served. , ...
(Date:2/13/2016)... Coral Springs, FL (PRWEB) , ... February 13, 2016 , ... ... on the environmental impact of American businesses. , The increasingly modern world of ... rely more often on non-renewable energy sources such as oil and coal, which pollutes ...
(Date:2/13/2016)... ... ... DDi , a Makro company, makes it to ... in eClinical Solutions. DDi has built its solution competency with a unique blend ... DDi provides smarter technology for Clinical Development, Regulatory and Enterprise domains by providing ...
(Date:2/12/2016)... ... 12, 2016 , ... The Lymphoma Research Foundation (LRF) – ... serving the lymphoma community through a comprehensive series of education programs, outreach initiatives ... at its 10th anniversary Fashion Luncheon on Monday, February 8, 2016. The special ...
(Date:2/12/2016)... ... February 12, 2016 , ... Coco Libre, the maker of coconut ... Events LA GRAMMY’s Style Lounge Event. Coco Libre will offer musicians and celebrities the ... the big event. The invitation-only gifting suite, held this year at the W Hollywood ...
Breaking Medicine News(10 mins):
(Date:2/12/2016)... 2016  Sequent Medical, Inc. announced today that it ... the safety and effectiveness of the WEB™ Aneurysm Embolization ... aneurysms.  Prof Laurent Spelle , MD, Head of ... France and Principal Investigator of the CLARYS ... and Germany.  Although patients with ruptured aneurysms ...
(Date:2/12/2016)... 2016  Aralez Pharmaceuticals Inc. (Nasdaq: ARLZ ) ... will ring the Nasdaq Closing Bell at the Nasdaq ... at 4:00 p.m. ET on Tuesday, February 16, ... Adrian Adams , will perform the honorary bell ... p.m. ET.  A live webcast will be available at: ...
(Date:2/12/2016)... 12, 2016 Indiso ... den ungedeckten medizinischen Bedarf bei Lungen- und ... klinischen Forschungsprogramms bekannt. Das Programm, das sich ... ihrer respiratorischen Funktionen und anderer klinischer Parameter. ... Medizintechnikunternehmen, das sich auf den ungedeckten medizinischen ...
Breaking Medicine Technology: