Navigation Links
Diabetes - New Treatment Approach At John Hopkins

Diabetes, a modern disease, can be now treated by a new approach involving release of sugar by liver cells. Initial experiment were made with mice by scientists // at John Hopkins Institute of Basic Biomedical Sciences and McKusick-Nathans Institute for Genetic Medicine.

The discovery by researchers in Hopkins' Institute of Basic Biomedical Sciences and McKusick-Nathans Institute for Genetic Medicine reveals that a protein called GCN5 is critical for controlling a domino-like cascade of molecular events that lead to the release of sugar from liver cells into the bloodstream. Understanding the role of GCN5 in maintaining blood sugar levels is leading to a clearer picture of how the body uses sugar and other nutrients to make, store and spend energy.

‘Understanding the ways that energy production and use are controlled is crucial to developing new drugs and therapies,’ says the report's senior author, Pere Puigserver, Ph.D., an assistant professor of cell biology at Hopkins.

The inability to properly regulate blood sugar levels leads to conditions like obesity and diabetes. Both type 1 and type 2 diabetes cause blood sugar levels to stay too high, which can lead to complications like blindness, kidney failure and nerve damage.

‘Diabetes is a really big problem, even when patients are given insulin and stay on strict diets,’ says Carles Lerin, Ph.D., a postdoctoral fellow in cell biology at Hopkins and an author of the report. ‘In the absence of a cure for the disease, we are really trying to focus on finding better treatment because currently available methods just don't work that efficiently,’ he says.

The body keeps blood sugar – known as glucose – within a narrow range. Extra glucose floating through the bloodstream, which is common after eating a meal, is captured and kept in the liver. When blood glucose runs low, the liver releases its stores back into the bloodstream. When those reserves are tapped out, liver cells turn on genes to make more glucose to fuel the body.

The research team found that GCN5 chemically alters another protein called PGC-1alpha that normally turns on a set of genes to manufacture enzymes required for glucose release. When GCN5 is fully functional in liver cells, this cascade is turned off and glucose is not released from those cells. Removal of functional GCN5 from liver cells restores the cells' ability to release glucose.

The researchers showed that GCN5 alters its target, sabotaging it by adding a chemical tag called an acetyl group. By using molecules that glow fluorescently, the researchers saw under high-power microscopes that GCN5 carries its tagged target to a different location in the cell's nucleus – sequestering it away from the genes it's normally meant to turn on.

‘GCN5 has been generally shown to turn on genes. No one knew that GCN5 could be used to turn off pathways’ says Lerin. ‘It was a bit of a surprise.’

When the researchers put GCN5 into live mice, they found that it can in fact decrease blood glucose levels. Liver cells in mice that were given no food for 16 hours actively release glucose into the bloodstream. Introducing GCN5 into their livers, however, causes blood glucose levels in these mice to be reduced.

‘These results show that changing GCN5 is sufficient to control the sugar balance in mice,’ says Puigserver. ‘Therefore, GCN5 has the potential to be a target for therapeutic drug design in the future.’

Souce: Eurekalert
'"/>




Related medicine news :

1. Is Diabetes the Leading Cause of Kidney Failure in India
2. Diabetes and Depression often go hand-in-hand
3. Thirty minutes of work up per day reduces the risk of Diabetes
4. Diabetes on the rise
5. Irregular Periods Linked to Diabetes
6. Cinnamon combats Diabetes
7. Good News For Women With Gestational Diabetes
8. Processed Meat, Diabetes connection Found
9. Pancreatic Cancer may be linked to Diabetes
10. Gestational Diabetes linked to Chromosomal defici
11. A way to slow the progression of Type 1 Diabetes
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/28/2017)... Petersburg Florida (PRWEB) , ... March 28, 2017 , ... ... Marine Corp to raise money to for the Toys for Tots Literacy Campaign at ... federal budget in excess of $70 billion, the U.S. ranks at number 14 internationally ...
(Date:3/28/2017)... ... March 28, 2017 , ... AutismOne announced ... American Association of Integrative Medicine and available for application on Saturday, May 27, ... 2017 Conference in Colorado Springs. , Ed Arranga, president of AutismOne, stated: "Many ...
(Date:3/28/2017)... ... March 28, 2017 , ... The ... in Atlantic City March 13-16, was a busy spot this year. Liz Solovay ... discussed strategies for preventing outbreaks among camp communities during the upcoming 2017 camping ...
(Date:3/28/2017)... ... ... a common and unwelcomed occurrence in people of all ages, genders and ethnicities. Dermatologist Dr. ... of dealing with excess skin oil. “Oily skin is a challenge to many of my ... the oily shine while keeping the skin fresh and clean,” says Dr. Au. , What ...
(Date:3/28/2017)... ... ... thrilling adventure that reveals the mystery of Kevin’s purpose. “A Prophets Bones” is the creation ... asked of him that he had neglected to do, but this was from God and ... some who would have felt themselves to be special and better than others due to ...
Breaking Medicine News(10 mins):
(Date:3/28/2017)... BOSTON , March 28, 2017 /PRNewswire/ ... today announced a partnership with premium news ... allows pharmaceutical companies to extract key insights from ... text mining technology. The Linguamatics I2E ... top 20 global pharmaceutical companies. The Linguamatics-Dow Jones ...
(Date:3/28/2017)...  Akcea Therapeutics, a subsidiary of Ionis Pharmaceuticals, Inc. (NASDAQ: ... directors: Christopher Gabrieli , ... as chairman of the board of Akcea Therapeutics. ... Forest Laboratories. Sandford D. Smith , ... "We are excited to announce this expansion to our ...
(Date:3/28/2017)... RXi Pharmaceuticals Corporation (NASDAQ: RXII), a ... significant unmet medical needs, today announced that it ... Office (JPO) for the composition of matter of ... the treatment or prevention of fibrotic disorders, including ... retinopathy (Japanese Patent #: 6060071).  This patent includes ...
Breaking Medicine Technology: