Navigation Links
Cellular System Causing Destruction Of Faulty Proteins In Cystic Fibrosis Identified

Researchers from University of North Carolina at Chapel Hill have managed to isolate a cellular system responsible for degrading proteins in Cystic Fibrosis. Blocking this// system allows some affected proteins to regain their shape and thus may herald in new treatments for the disease.

Cystic fibrosis (CF) is a fatal disease caused by a defective gene that produces a misshapen form of the protein cystic fibrosis transmembrane conductance regulator (CFTR). People with cystic fibrosis do not have enough CFTR for their cells to work normally because their bodies quickly destroy the mutant protein.

"Most cases of CF are caused by the inability of faulty CFTR to get in the correct shape, which leads cells to place it in the trash bin," said senior author Dr. Douglas Cyr, professor of cell and developmental biology at UNC School of Medicine. "Our research helps define the basic mechanism for CF and identify targets for the development of therapeutics designed to get CFTR into shape and allow it function normally in the lung," Cyr said.

The results, published Aug. 11, 2006, in the journal Cell, point to several possible targets for the development of new treatments aimed at stopping the disease, the researchers said.

Scientists have known for some time that treatment of cultured cells with compounds known as chemical chaperones can increase the fitness of misshaped CFTR and get it into proper shape. Thus, "If we can figure out how to get CFTR into the right shape, we can cure the disease," Cyr said.

To better understand how to fix CFTR, Cyr's research team at the UNC Cystic Fibrosis Pulmonary Research and Treatment Center focused on identifying the cellular system that disposes of faulty CFTR. The investigators identified cell components that specifically recognizes misshapen CFTR and drops it in the molecular trash bin. The team found that turning off these components – the cell's trash collectors -- exten ds the life of faulty CFTR proteins and thereby enables some of it to assume a functional shape.

The trash collectors newly identified by the Cyr group are two different ubiquitin ligases, proteins that specifically recognize misshaped regions of CFTR and tag them with a degradation signal known as ubiquitin. The ubiquitin tag tells the cell to destroy the marked CFTR, a process overseen by a destroyer called the proteasome. This trash system is known as the ubiquitin proteasome pathway.

"We've identified the trash collectors that recognize misfolded proteins, decide if they might be toxic to the cell and mark them with ubiquitin. The ubiquitinated proteins, including faulty CFTR, are then degraded or shredded by the proteasome," Cyr said.

"Understanding this pathway gives us greater insight into what's wrong with the protein -- information that will help people design better therapeutics for the disease," Cyr said.

Source: Eurekalert
'"/>




Related medicine news :

1. Use of Cellular Phones associated with Increased risk of Brain Tumors
2. Researchers Discover Two Proteins Involved In Cellular Destruction Of HIV Virus
3. Unchecked Cellular Repair Pathway Causes Liver Cancer
4. New Way to Open Cellular Ion Channels, Implications for Drug Design
5. Gene May Regulate Cellular Aging
6. Cellular Cues Identified for Stroke Recovery
7. Cellular Pathway Yields Potential New Weapon in Vaccine Arsenal
8. Cocaines Use During Pregnancy May Cause Lasting Cellular Effects
9. Early Warning System For Breast Cancer
10. Gene connected to Multi-System disorder discovered
11. Reviving the Immune System
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/26/2016)... ... June 26, 2016 , ... ... they have been diagnosed with endometriosis. These women need a treatment plan to ... a comprehensive approach that can help for preservation of fertility and ultimately achieving ...
(Date:6/25/2016)... , ... June 25, 2016 , ... First Choice ... States, named Dr. Sesan Ogunleye, as the Medical Director of its new Mesquite-Samuell Farm ... Medical Director of our new Mesquite location,” said Dr. James M. Muzzarelli, Executive Medical ...
(Date:6/24/2016)... ... 24, 2016 , ... A recent article published June 14 on ... article goes on to state that individuals are now more comfortable seeking to undergo ... such as calf and cheek reduction. The Los Angeles area medical group, Beverly Hills ...
(Date:6/24/2016)... ... June 24, 2016 , ... Global law firm Greenberg ... Legal Elite. The attorneys chosen by their peers for this recognition are considered among ... Greenberg Traurig Shareholders received special honors as members of this year’s Legal Elite Hall ...
(Date:6/24/2016)... ... 2016 , ... EB Medicine presented its first-ever “Issue of ... in Ponte Vedra Beach, FL. The awards honor the outstanding work of leading ... and Pediatric Emergency Medicine Practice. , “With this award, we recognize the efforts ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... June 24, 2016  Arkis BioSciences, a leading ... and more durable cerebrospinal fluid treatments, today announced ... Series-A funding is led by Innova Memphis, followed ... other private investors.  Arkis, new financing will accelerate ... the market release of its in-licensed Endexo® technology. ...
(Date:6/23/2016)... 23, 2016 Research and Markets has ... - Forecast to 2022" report to their offering. ... for the patients with kidney failure, it replaces the function ... the patient,s blood and thus the treatment helps to keep ... in balance. Increasing number of ESRD patients ...
(Date:6/23/2016)... DUBLIN , June 23, 2016 ... the "Pharmaceutical Excipients Market by Type (Organic Chemical ... Preservative), Formulation (Oral, Topical, Coating, Parenteral) - Global Forecast ... The global pharmaceutical excipients ... 2021 at a CAGR of 6.1% in the forecast ...
Breaking Medicine Technology: