Navigation Links
Carbon Nanoneedles For Drug Delivery

A multinational team of researchers based in the UK has found a way to make carbon nanotubes easily cross biological barriers, opening up the potential for a new form of drug delivery// .

UK-based researchers from the School of Pharmacy, University of London, chemically modified carbon nanotubes by adding a range of different functional groups and found that they were able to enter a variety of cell types, including human cancer cells.

Carbon nanotubes have shown potential as a form of drug delivery, but there is a major setback in that they are highly insoluble in their unmodified form.

”This makes them impossible to handle in the biological environment,” Dr Kosta Kostarelos, deputy head of the Centre for Drug Delivery Research and leader of the research group told In-PharmaTechnologist.com.

It is the functionalisation of the carbon nanotubes that allows them to become water soluble, and therefore able to be used in a biological environment with potential applications as a novel drug delivery method.

”The functionalisation of the nanotubes is therefore hugely important.” Dr Kostarelos continued.

The research team found that the functionalised nanotubes were able to easily cross-cell barriers in mammalian, bacterial and fungal cells without causing cell death, and were even able to enter cells under conditions, which would usually hinder this process.

”The nanotubes moved through the cells as individual nanotubes or as small bundles, even under conditions that inhibit [cell absorption]” said Kostarelos.

”Nanotubes capable of acting as cell-penetrating materials will have tremendous advantages. The potential of functionalised carbon nanotubes to act as nanoneedles that pierce plasma membranes and translocate directly into cytoplasm without causing cell damage or death is significant for a variety of biomedical and biotechnology applications.”

While the actual mechanism by which the functionalised nanotubes are taken up by cells is still unclear, the hypothesis that the team is working with is that they simply pierce the cell and move within it.

”What we do know is that whatever functionalised carbon nanotube we used, it was taken up by every different kind of cell we investigated,” said Kostarelos.

”Some types of functionalisation prompted a greater uptake, but it was by no means a prerequisite. All functionalised nanotubes were taken up to a significant extent.”

The research team, with colleagues over in France, have experimented with delivering drugs such as amphotericin B (an anti-fungal treatment) and methotrexate (an anti-cancer drug) using the functionalised carbon nanotubes, but encountered some obstacles with drug release along the way. ”Once you chemically conjugate the drug on the nanotube, the drug is not capable of leaving the nanotube,” Dr Kostarelos explained.

”So we therefore need some kind of reversible association to be able to release the drug intracellularly.”

Technology to tackle this problem does exist, but needs to be modified to address this specific case. The researchers are currently pursuing this line of investigation as part of the next stage of their research.

In February last year the team published results of the first ever-intravenous administration of functionalised carbon nanotubes in vivo, injecting the nanotubes into animals. The results showed that the functionalised nanotubes were excreted very quickly in urine, which is a significant point in favor of their use in drug delivery, as it would alleviate toxicity concerns regarding the nanotubes themselves.

Now, the research team has moved on a step further and has added drugs to the mix rather than the nanotubes on their own. While still in the research stage at present, results are anticipated within the year and according to Dr Kostarelos the results are looking ”ver y promising”.

If the research team's working hypothesis regarding the uptake of functionalised carbon nanotubes is correct, the technique could offer significant advantages over other drug delivery mechanisms currently used.

Traditional delivery methods (using liposomes for example) usually exploit endocytosis, but stop before reaching the cytoplasm leaving other barriers for the drug to fight through. By piercing plasma membranes and heading straight to the cytoplasm, the functionalised carbon nanotube encounters fewer biological barriers and delivers the drug more directly.

The nanotubes also offer a structural advantage in that they are extremely thin but very long, offering a large surface area on which to graft the required drug. This again offers an improvement over liposome drug delivery, and also allows the amount of drug loaded onto the nanotube to be regulated.

Kostarelos observed that developments and improvements in carbon nanotube material are occurring almost daily, and the product itself is therefore likely to become more refined over time. Although difficult to assess the cost of a potential drug delivery product resulting from the technique, Kostarelos noted that there is so many possible applications for carbon nanotubes that they can be produced in bulk very cheaply.

Although functionalisation of the nanotubes would increase the cost slightly, it would still represent ”an economic benefit to pharmaceutical companies, especially compared to liposomes” Kostarelos said.

The functionalised carbon nanotube work is still at a relatively early stage, and the researchers say that they are still defining a framework as far as pharmaceutical development is concerned.

The team is, however, pursuing the line of research and the potential of functionalised carbon nanotubes for drug delivery. Kostarelos told In-PharmaTechnologist that he hopes to have data concerning the efficacy of dr ugs delivered by this novel technique within five years.

Source-Bio-Bi Technology
SRI
'"/>




Related medicine news :

1. Carbon monoxide passes down
2. Research Shows Carbon Monoxide Prevents Inflammations
3. Protein Carbonyl Level Causes Oxidative Protein Damage In Diabetics
4. Absorption Of Carbon Nanotube Measured In Worms Revolutionize Cancer Research
5. Carbon Monoxide May Prevent Pre-Eclampsia
6. Carbon Monoxide May Treat Pre-Eclampsia
7. Benefits of Carbon Monoxide
8. Carbon Monoxide Protects from Multiple Sclerosis
9. Kerala Youth Die of Carbon Monoxide Inhalation
10. Carbon Monoxide Poisoning Claims Another Set Of Victims
11. Laboratory Testing Can Identify Risk of Pre-Term Labor and Delivery
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/28/2017)... Calif. (PRWEB) , ... March 28, 2017 , ... ... its leading physicians, Paul Yost, will begin serving as new board chair for ... this month. Yost will serve the remainder of soon-to-be former chair Mark Refowitz’s ...
(Date:3/28/2017)... ... March 28, 2017 , ... ... of two biometric time and attendance tracking products: the new NCheck Cloud Bio ... Cloud Bio Attendance uses biometric face recognition to enable users to check in ...
(Date:3/28/2017)... (PRWEB) , ... March 28, 2017 , ... ... direct measurement of corrosive ions found in power plant water and steam. , ... such as turbines and boilers, leading to extensive maintenance and unplanned shutdowns. Monitoring ...
(Date:3/28/2017)... (PRWEB) , ... March 28, 2017 , ... The Executives, ... to raise money to for the Toys for Tots Literacy Campaign at their Semi-Annual ... in excess of $70 billion, the U.S. ranks at number 14 internationally in literacy. ...
(Date:3/28/2017)... ... March 28, 2017 , ... ... to achieve the “perfect smile.” The National Association of Dental Laboratories (NADL) is ... dentists should be aware of when utilizing dental laboratories and technicians that create ...
Breaking Medicine News(10 mins):
(Date:3/28/2017)... ALBANY, New York , March 28, 2017 /PRNewswire/ ... features a largely consolidated vendor landscape, with the top ... and Agilent Technologies accounting for a significant 49% of ... in a recent report. The vendor landscape is intensely ... large share in the overall market. These factors have ...
(Date:3/28/2017)... 2017 This morning,s research ... stocks: The Medicines Co. (NASDAQ: MDCO), Ironwood Pharmaceuticals ... and Supernus Pharmaceuticals Inc. (NASDAQ: SUPN ... space which is governed by the same governing ... the industry are wholesalers, retailers, pharmacies, and benefit ...
(Date:3/28/2017)... , March 28, 2017  Akcea Therapeutics, a subsidiary of ... the company,s board of directors: ... Mr. Gabrieli will serve as chairman of the board of ... chief commercial officer of Forest Laboratories. ... Partners. "We are excited to announce ...
Breaking Medicine Technology: