Navigation Links
Adherence of Nanoparticles to RBC- Very Effective Drug Delivery Method

Researchers at the University of California, have discovered that attaching polymeric nanoparticles to the surface of red blood cells dramatically increases the in vivo lifetime of the nanoparticles.

Polymeric nanoparticles are excellent carriers for delivering drugs. They protect drugs from degradation until they reach their target and provide sustained release of drugs. Polymeric nanoparticles, however, suffer from one major limitation: they are quickly removed from the blood, sometimes in minutes, rendering them ineffective in delivering drugs.

The research team, led by Samir Mitragotri, a professor of chemical engineering, and Elizabeth Chambers, a recent doctoral graduate, found that nanoparticles can be forced to remain in the circulation when attached to red blood cells.

The particles eventually detach from the blood cells due to shear forces and cell-to-cell interactions, and are cleared from the system by the liver and spleen. Red blood cell circulation is not affected by attaching the nanoparticles.

Attachment of polymeric nanoparticles to red blood cells combines the advantages of the long circulating lifetime of the red blood cell, and their abundance, with the robustness of polymeric nanoparticles, said Mitragotri. Using red blood cells to extend the circulation time of the particles avoids the need to modify the surface chemistry of the entire particle, which offers the potential to attach chemicals to the exposed surface for targeting applications.

The researchers have learned that particles adhered to red blood cells can escape phagocytosis because red blood cells have a knack for evading macrophages. Nanoparticles arent the first to be piggybacking on red blood cells; the strategy has already been adopted by certain bacteria, such as hemobartonella, that adhere to RBCs and can remain in circulation for several weeks.

The researchers say that it may be possible to keep the nanopartic les in circulation for a relatively long time, theoretically up to the circulation lifetime of a red blood cell which is 120 days if the binding between particles and the red blood cells is strengthened. The methodology is applicable to drugs that are effective while still attached to a red blood cell, although the researchers say that slow release from the red blood cell surface is also feasible.

Mitragotri says this mode of prolonging particle circulation has significant implications in drug delivery, potentially leading to new treatments for a broad variety of conditions such as cancer, blood clots and heart disease. Dr. Steven R. Goodman, Editor-in-Chief of the journal, said this study dealing with the attachment of nanoparticles to red blood cells may also have important implications for future treatment of hematologic disorders.

This fusion of modern nanobioscience with cell biology and hematology is precisely the type of interdisciplinary study that the new Experimental Biology and Medicine is interested in publishing. Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences.


Related medicine news :

1. Adherence to Dietary Recommendations Measured
2. Medication Adherence - Influenced by Drug or Race?
3. Sub-Saharan Africans With HIV May Achieve Favorable Levels of ART Adherence
4. Pharmacy Care Program Can Increase Medication Adherence in Elderly
5. Study Finds No Correlation Between Number of Pills and Adherence to It
6. Gold Nanoparticles: Agents For Noninvasive Cancer Therapy
7. Alzheimers Can Be Slowed Down By Gold Nanoparticles
8. Gold Nanoparticles Are Good Detectors Biological Toxins
9. Scientists To Study Effect Of Nanoparticles On Liver
10. Nanoparticles and Their Damage to Liver Cells
11. Effect of Nanoparticles on Liver
Post Your Comments:

(Date:6/27/2016)... ... June 27, 2016 , ... A revolution is underway. ... transport experience for the millions of people who require these medical transport services ... industry through the use of technology. Now, SmartEMS has put forth an industry-changing ...
(Date:6/26/2016)... , ... June 26, 2016 , ... Pixel Film Studios ... X. , "Film editors can give their videos a whole new perspective by using ... - CEO of Pixel Film Studios. , ProSlice Levels contains over 30 Different ...
(Date:6/25/2016)... , ... June 25, 2016 , ... ... policy issues and applications at AcademyHealth’s Annual Research Meeting June 26-28, 2016, at ... on several important health care topics including advance care planning, healthcare costs and ...
(Date:6/25/2016)... (PRWEB) , ... June 25, 2016 , ... First ... United States, named Dr. Sesan Ogunleye, as the Medical Director of its new Mesquite-Samuell ... facility Medical Director of our new Mesquite location,” said Dr. James M. Muzzarelli, Executive ...
(Date:6/25/2016)... Canada (PRWEB) , ... June 25, 2016 , ... Conventional ... pursuit of success. In terms of the latter, setting the bar too high can ... risk more than just slow progress toward their goal. , Research from ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... June 24, 2016 Research and Markets ... for Companion Diagnostic Tests" report to their offering. ... Companion Diagnostics The World Market for Companion ... medicine diagnostics. Market analysis in the report includes the following: ... (In Vitro Diagnostic Kits) by Region (N. America, EU, ROW), ...
(Date:6/24/2016)... LEXINGTON, Mass. , June 24, 2016   ... specialty pharmaceutical company developing innovative inhaled drugs, announced today ... when Russell Investments reconstituted its comprehensive set ... 2016. "This is an important milestone for ... "It will increase shareholder awareness of our progress in ...
(Date:6/24/2016)... , June 24, 2016  Arkis BioSciences, a ... invasive and more durable cerebrospinal fluid treatments, today ... The Series-A funding is led by Innova Memphis, ... and other private investors.  Arkis, new financing will ... and the market release of its in-licensed Endexo® ...
Breaking Medicine Technology: