Navigation Links
A New Rapid 3-D Cell-Growth Technique For Growing Heart Muscle

U-M team reports success of rapid 3-D cell-growth technique that produces pulsing, organized tissue. Though it was grown in the lab, it looks, contracts //and responds almost like natural heart muscle, bringing scientists another step closer to the goal of creating replacement parts for damaged human hearts, or eventually growing an entirely new heart from just a spoonful of loose heart cells.

This week, the researchers from University of Michigan are reporting significant progress in growing bioengineered heart muscle (BEHM), with organized cells, capable of generating pulsating forces and reacting to stimulation more like real muscle than ever before.

Ravi K. Birla, Ph.D., of the Artificial Heart Laboratory in U-M’s Section of Cardiac Surgery and the U-M Cardiovascular Center, is leading the Research team. The U-M team details its achievement in a new paper published online in the Journal of Biomedical Materials Research Part A.

The three-dimensional tissue was grown using an innovative technique that is faster than others that have been tried in recent years, but still yields tissue with significantly better properties. The approach uses a fibrin gel to support rat cardiac cells temporarily, before the fibrin breaks down as the cells organize into tissue.

And while BEHM is still years away from use as a human heart treatment, or as a testing ground for new cardiovascular drugs, the U-M researchers say their results should help accelerate progress toward those goals. U-M is applying for patent protection on the development and is actively looking for a corporate partner to help bring the technology to market.

The new paper actually compares two different ways of using fibrin gel as a basis for creating BEHM: layering on top of the gel, and embedding within it. In the end, the layering approach produced a more cohesive tissue that contracted with more force – a key finding because embedding has been seen as the more promising technique.

The ability to measure the forces generated by the BEHM as it contracts is crucial, Birla explains. It's made possible by a precise instrument called an optical force transducer that gives more precise readings than that used by other teams.

The measurement showed that the BEHM that had formed in just four days after a million cells were layered on fibrin gel could contract with an active force of more than 800 micro-Newtons. That's still only about half the force generated within the tissue of an actual beating heart, but it's much higher than the forces created by engineered heart tissue samples grown and reported by other researchers. Birla says the team expects to see greater forces created by BEHM in future experiments that will bathe the cells in an environment that's even more similar to the body's internal conditions.

In the new paper, the team reports that contraction forces increased when the BEHM tissues were bathed in a solution that included additional calcium and a drug that acts on beta-adrenergic receptors. Both are important to the signaling required to produce cohesive action by cells in tissue.

The U-M team also assessed the BEHM's structure and function at different stages in its development. First author and postdoctoral fellow Yen-Chih Huang, Ph.D., of the U-M Division of Biomedical Engineering, led the creation of the modeling system. Co-author and research associate Luda Khait examined the tissue using special stains that revealed the presence and concentration of the fibrin gel, and of collagen generated by the cells as they organized into tissue.

Over the course of several days, the fibrin broke down as intended, after fulfilling its role as a temporary support for the cells. This may be a key achievement for future use of BEHM as a treatment option, because the tissue could be grown and implanted relatively quickly.

The U-M Artificial Heart Laborator y ( is part of the U-M Section of Cardiac Surgery, and draws its strength from the fact that it includes bioengineers, cell biologists and heart surgeons – a multidisciplinary group that can tackle both the technical and clinical hurdles in the field of engineering heart muscle. Its focus is to evaluate different platforms for engineering cardiovascular structures in the laboratory. Active programs include tissue-engineering models for cardiac muscle, tri-leaflet valves, cell-based cardiac pumps and vascular grafts. In addition, the laboratory has expertise in several different tissue engineering platforms: self-organization strategies, biodegradable hydrogels such as fibrin, and polymeric scaffolds.

Each approach may turn out to have its own applications, says Birla, and the ability to conduct side-by-side comparisons is important. Other researchers have focused on one approach or another, but the U-M team can use its lab to test multiple approaches at once.

'Fundamentally, we're interested in creating models of the different components of the heart one by one,' says Birla.

'It's like building a house – you need to build the separate pieces first. And once we understand how these models can be built in the lab, then we can work toward building a bioengineered heart.' He notes that while many other labs focus on growing one heart component, only U-M is working on growing all the different heart components.

Already, the U-M team has begun experiments to transplant BEHM into the hearts of rats that have suffered heart attacks, and see if the new tissue can heal the damage. This work is being conducted by Francesco Migneco, M.D., a research fellow with the Artificial Heart Laboratory. Further studies will implement 'bioreactors' that will expose the BEHM tissue to more of the nutrients and other conditions that are present in the body.


Related medicine news :

1. Smallpox Would Spread Rapidly
2. With More Appearance Conscious Consumers The Need For Slimming Products Is Rapidly Rising
3. Home Based Rapid HIV Test Kit to be approved by US – OraQuick Test Ki
4. Breast Cancer Survivors Emotional Recovery Is Rapid After Treatment
5. Breast Cancer In India Rising Rapidly
6. Alzheimers Disease Progresses Rapidly In Highly Educated
7. Rapid Aging of Arteries In People With Advanced Heart Disease
8. New Tests Promise Rapid and Accurate Detection of Malaria
9. Rapid Flu Test, Beneficial in Cutting Down Antibiotic Use
10. Rapid Flu Testing Decreases Antibiotic Use in Hospitalized Adults
11. A Patented Device for Rapid Diagnosis of Diseases
Post Your Comments:

(Date:11/25/2015)... Ill. (PRWEB) , ... November 25, 2015 , ... ... and potentially more aggressive than those found on mammography, according to a study ... findings of additional cancers not seen on mammography may necessitate a change in ...
(Date:11/25/2015)... ... November 25, 2015 , ... ... factory direct sauna parts and accessories. , Sauna accessories help improve the bather ... style and personality. From basic styles for the purist looking for simplicity in ...
(Date:11/25/2015)... , ... November 25, 2015 , ... According to an ... robot is being more and more widely heralded as a breakthrough for performing hernia ... method has over traditional laparoscopic surgery is that it can greatly reduce the pain ...
(Date:11/25/2015)... , ... November 25, 2015 , ... The McHenry County ... recent successful appellate decision obtained by Attorneys Francisco J. Botto and Alex C. Wimmer. ... Illinois Workers’ Compensation Comm’n, 2015 IL App (2d) 130884WC. , According to court documents, ...
(Date:11/25/2015)... ... 25, 2015 , ... Brillianteen, McGaw YMCA’s student-produced musical show, ... 65th Anniversary Brillianteen Revue, scheduled for March 4-6, 2016. Auditions for this final ... has been a treasured tradition for numerous families in the Evanston community. Over ...
Breaking Medicine News(10 mins):
(Date:11/25/2015)... Allergan plc (NYSE: AGN ), ... a start-up  biotechnology company focused on the development ... funded by the F-Prime Biomedical Research Initiative (FBRI), ... exclusive collaboration to support the discovery and development ... and Obsessive Compulsive disorders (OCD). ...
(Date:11/25/2015)... Ohio , Nov. 25, 2015 ... handle hazardous drug preparations (e.g. pharmacists, pharmacy technicians, ... and veterinary technicians). The chapter also covers all ... drugs (e.g., pharmacies, hospitals, other healthcare institutions, patient ... --> --> ...
(Date:11/25/2015)... 2015 Asia -based ... BioLight and the New Investors will make a direct ... a private placement. The financing will help IOPtima to ... used in the treatment of glaucoma, as well as ... IOPtimate™ system with the U.S. Food and Drug Administration, ...
Breaking Medicine Technology: