Navigation Links
A New Rapid 3-D Cell-Growth Technique For Growing Heart Muscle

U-M team reports success of rapid 3-D cell-growth technique that produces pulsing, organized tissue. Though it was grown in the lab, it looks, contracts //and responds almost like natural heart muscle, bringing scientists another step closer to the goal of creating replacement parts for damaged human hearts, or eventually growing an entirely new heart from just a spoonful of loose heart cells.

This week, the researchers from University of Michigan are reporting significant progress in growing bioengineered heart muscle (BEHM), with organized cells, capable of generating pulsating forces and reacting to stimulation more like real muscle than ever before.

Ravi K. Birla, Ph.D., of the Artificial Heart Laboratory in U-M’s Section of Cardiac Surgery and the U-M Cardiovascular Center, is leading the Research team. The U-M team details its achievement in a new paper published online in the Journal of Biomedical Materials Research Part A.

The three-dimensional tissue was grown using an innovative technique that is faster than others that have been tried in recent years, but still yields tissue with significantly better properties. The approach uses a fibrin gel to support rat cardiac cells temporarily, before the fibrin breaks down as the cells organize into tissue.

And while BEHM is still years away from use as a human heart treatment, or as a testing ground for new cardiovascular drugs, the U-M researchers say their results should help accelerate progress toward those goals. U-M is applying for patent protection on the development and is actively looking for a corporate partner to help bring the technology to market.

The new paper actually compares two different ways of using fibrin gel as a basis for creating BEHM: layering on top of the gel, and embedding within it. In the end, the layering approach produced a more cohesive tissue that contracted with more force – a key finding because embedding has been seen as the more promising technique.

The ability to measure the forces generated by the BEHM as it contracts is crucial, Birla explains. It's made possible by a precise instrument called an optical force transducer that gives more precise readings than that used by other teams.

The measurement showed that the BEHM that had formed in just four days after a million cells were layered on fibrin gel could contract with an active force of more than 800 micro-Newtons. That's still only about half the force generated within the tissue of an actual beating heart, but it's much higher than the forces created by engineered heart tissue samples grown and reported by other researchers. Birla says the team expects to see greater forces created by BEHM in future experiments that will bathe the cells in an environment that's even more similar to the body's internal conditions.

In the new paper, the team reports that contraction forces increased when the BEHM tissues were bathed in a solution that included additional calcium and a drug that acts on beta-adrenergic receptors. Both are important to the signaling required to produce cohesive action by cells in tissue.

The U-M team also assessed the BEHM's structure and function at different stages in its development. First author and postdoctoral fellow Yen-Chih Huang, Ph.D., of the U-M Division of Biomedical Engineering, led the creation of the modeling system. Co-author and research associate Luda Khait examined the tissue using special stains that revealed the presence and concentration of the fibrin gel, and of collagen generated by the cells as they organized into tissue.

Over the course of several days, the fibrin broke down as intended, after fulfilling its role as a temporary support for the cells. This may be a key achievement for future use of BEHM as a treatment option, because the tissue could be grown and implanted relatively quickly.

The U-M Artificial Heart Laborator y ( is part of the U-M Section of Cardiac Surgery, and draws its strength from the fact that it includes bioengineers, cell biologists and heart surgeons – a multidisciplinary group that can tackle both the technical and clinical hurdles in the field of engineering heart muscle. Its focus is to evaluate different platforms for engineering cardiovascular structures in the laboratory. Active programs include tissue-engineering models for cardiac muscle, tri-leaflet valves, cell-based cardiac pumps and vascular grafts. In addition, the laboratory has expertise in several different tissue engineering platforms: self-organization strategies, biodegradable hydrogels such as fibrin, and polymeric scaffolds.

Each approach may turn out to have its own applications, says Birla, and the ability to conduct side-by-side comparisons is important. Other researchers have focused on one approach or another, but the U-M team can use its lab to test multiple approaches at once.

'Fundamentally, we're interested in creating models of the different components of the heart one by one,' says Birla.

'It's like building a house – you need to build the separate pieces first. And once we understand how these models can be built in the lab, then we can work toward building a bioengineered heart.' He notes that while many other labs focus on growing one heart component, only U-M is working on growing all the different heart components.

Already, the U-M team has begun experiments to transplant BEHM into the hearts of rats that have suffered heart attacks, and see if the new tissue can heal the damage. This work is being conducted by Francesco Migneco, M.D., a research fellow with the Artificial Heart Laboratory. Further studies will implement 'bioreactors' that will expose the BEHM tissue to more of the nutrients and other conditions that are present in the body.


Related medicine news :

1. Smallpox Would Spread Rapidly
2. With More Appearance Conscious Consumers The Need For Slimming Products Is Rapidly Rising
3. Home Based Rapid HIV Test Kit to be approved by US – OraQuick Test Ki
4. Breast Cancer Survivors Emotional Recovery Is Rapid After Treatment
5. Breast Cancer In India Rising Rapidly
6. Alzheimers Disease Progresses Rapidly In Highly Educated
7. Rapid Aging of Arteries In People With Advanced Heart Disease
8. New Tests Promise Rapid and Accurate Detection of Malaria
9. Rapid Flu Test, Beneficial in Cutting Down Antibiotic Use
10. Rapid Flu Testing Decreases Antibiotic Use in Hospitalized Adults
11. A Patented Device for Rapid Diagnosis of Diseases
Post Your Comments:

(Date:6/27/2016)... , ... June 27, 2016 , ... recently awarded ... Eyeglasses . , Millions of individuals in the United States and Canada wear ... a way to both correct vision and make a fashion statement. Even celebrities use ...
(Date:6/26/2016)... NC (PRWEB) , ... June 26, 2016 , ... Brent Kasmer, a legally blind and ... to be personalized through a fitness app. The fitness app plans to fix the two ... currently only offer a one size fits all type program , They don’t ...
(Date:6/25/2016)... ... 2016 , ... "With 30 hand-drawn hand gesture animations, FCPX users can easily ... of Pixel Film Studios. , ProHand Cartoon’s package transforms over 1,300 hand-drawn pictures ... . Simply select a ProHand generator and drag it above media or text in ...
(Date:6/25/2016)... ... June 25, 2016 , ... Conventional wisdom preaches the benefits of moderation, whether ... latter, setting the bar too high can result in disappointment, perhaps even self-loathing. However, ... their goal. , Research from reveals that behind the tendency ...
(Date:6/24/2016)... ... June 24, 2016 , ... ... Sessions in Dallas that it will receive two significant new grants to support ... as PHA marked its 25th anniversary by recognizing patients, medical professionals and scientists ...
Breaking Medicine News(10 mins):
(Date:6/23/2016)... , June 23, 2016  In a startling report released ... failing their residents by lacking a comprehensive, proven plan to eliminate ... a definitive ranking of how states are tackling the worst drug ... only four states – Kentucky , ... Vermont . Of the 28 failing states, three – ...
(Date:6/23/2016)... 2016 Research and Markets has announced ... Analysis 2016 - Forecast to 2022" report to their ... contains up to date financial data derived from varied research ... trends with potential impact on the market during the next ... which comprises of sub markets, regional and country level analysis. ...
(Date:6/23/2016)... DUBLIN , June 23, 2016 ... "Key Pharma News Issue 52" report to their offering. ... need in influenza treatment creates a favourable commercial environment for ... and growing patient base that will serve to drive considerable ... flu vaccine would serve to cap sales considerably, but development ...
Breaking Medicine Technology: