Navigation Links
X-rays for early Alzheimer's disease detection
Date:6/16/2009

UPTON, NY Researchers at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have demonstrated a new, highly detailed x-ray imaging technique that could be developed into a method for early diagnosis of Alzheimer's disease. The technique has previously been used to look at tumors in breast tissue and cartilage in human knee and ankle joints, but this study is the first to test its ability to visualize a class of miniscule plaques that are a hallmark feature of Alzheimer's disease. Their results will appear in a July 2009 edition of the journal NeuroImage.

Images of the brain of a transgenic mouse obtained through histology and the corresponding brain region imaged with DEI in computed tomography mode. Scientists have long known that Alzheimer's disease is associated with plaques, areas of dense built-up proteins, in the affected brain. Many also believe that these plaques, called amyloid beta (A) plaques after the protein they contain, actually cause the disease. A major goal is to develop a drug that removes the plaques from the brain. However, before drug therapies can be tested, researchers need a non-invasive, safe, and cost-effective way to track the plaques' number and size.

That is no easy task: A plaques are extremely small on the micrometer scale, or one millionth of a meter. And conventional techniques such as computed tomography (CT) poorly distinguish between the plaques and other soft tissue such as cartilage or blood vessels.

"These plaques are very difficult to see, no matter how you try to image them," said Dean Connor, a former postdoctoral researcher at Brookhaven Lab now working for the University of North Carolina. "Certain methods can visualize the plaque load, or overall number of plaques, which plays a role in clinical assessment and analysis of drug efficacy. But these methods cannot provide the resolution needed to show us the properties of individual A plaques."

A technique developed at Brookhaven, called diffraction-enhanced imaging (DEI), might provide the extra imaging power researchers crave. DEI, which makes use of extremely bright beams of x-rays available at synchrotron sources such as Brookhaven's National Synchrotron Light Source, is used to visualize not only bone, but also soft tissue in a way that is not possible using standard x-rays. In contrast to conventional sources, synchrotron x-ray beams are thousands of times more intense and extremely concentrated into a narrow beam. The result is typically a lower x-ray dose with a higher image quality.

In this study, researchers from Brookhaven and Stony Brook University used DEI in a high-resolution mode called micro-computed tomography to visualize individual plaques in a mouse-brain model of Alzheimer's disease. The results not only revealed detailed images of the plaques, but also proved that DEI can be used on whole brains to visualize a wide range of anatomical structures without the use of a contrast agent.

The images are similar to those produced by high-resolution magnetic resonance imaging (MRI), with the potential to even exceed MRI pictures in resolution, Connor said. "The contrast and resolution we achieved in comparison to other types of imaging really is amazing," he said. "When DEI is used, everything just lights up."

The radiation dose used for this study is too high to safely image individual A plaques in humans the ultimate goal but the results provide researchers with promising clues.

"Now that we know we can actually see these plaques, the hope is to develop an imaging modality that will work in living humans," Connor said. "We've also now shown that we can see these plaques in a full brain, which means we can produce images from a live animal and learn how these plaques grow."

Funding for this study was provided by the National Institutes of Health, the National Cancer Institute, and Brookhaven Lab's Laboratory Directed Research and Development program. The National Synchrotron Light Source is funded by the Office of Basic Energy Sciences within the DOE Office of Science.

How it works

To make a diffraction-enhanced image, x-rays from the synchrotron are first tuned to one wavelength before being beamed at an anatomical structure or slide. As the monochromatic (single wavelength) beam passes through the tissue, the x-rays scatter and refract, or bend, at different angles depending on the characteristics of the tissue. The subtle scattering and refraction are detected by what is called an analyzer crystal, which diffracts, or changes the intensity, of the x-rays by different amounts according to their scattering angles.

The diffracted beam is passed onto a radiographic plate or digital recorder, which documents the differences in intensity to show the interior structural details.


'/>"/>

Contact: Kendra Snyder
ksnyder@bnl.gov
631-344-8191
DOE/Brookhaven National Laboratory
Source:Eurekalert

Related medicine news :

1. X-rays power discoveries at Chicagos Field Museum
2. X-rays often repeated for patients in developing countries
3. Possible link found between X-rays and prostate cancer
4. X-Rays Help Predict Permanent Bone Damage From Bisphosphonates
5. Pot bellies linked to early signs of cardiovascular disease
6. Eye-staining technique offers early detection for dry eye syndrome
7. Early Weight Loss in Women Linked to Dementia
8. Isolation of a new gene family essential for early development
9. U of M study: Early treatment can reverse heart damage
10. Gerresheimer to be Included in the SDAX Early Decision on Inclusion in the MDAX on September 5, 2007
11. Rock N Roll: Sex, Drugs and an Early Exit
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... ... 27, 2016 , ... The OSHA Training Center at ... Center headquartered in Northern California, has issued an important reminder to employers to ... Employers with workers exposed to high temperatures should establish a complete heat ...
(Date:6/27/2016)... ... ... "FCPX editors can now reveal their media with growing colorful split screen ... - CEO of Pixel Film Studios. , ProSlice Color brings the split screens ... reveal the media of their split screens with growing colorful panels. , ProSlice Color ...
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... ... for mental health professionals, announced today its affiliation with Tennessee Counseling Association. ... solutions to the network of the Tennessee Counseling Association, adding exclusive benefits and ...
(Date:6/27/2016)... ... June 27, 2016 , ... ... industry today announced its strategic partnership with Connance, a healthcare industry leader ... two companies’ proven, proprietary technology combine to provide health systems, hospitals and ...
(Date:6/27/2016)... ... June 27, 2016 , ... A revolution ... the emergency ambulance transport experience for the millions of people who require these ... disrupted the taxi industry through the use of technology. Now, SmartEMS has put ...
Breaking Medicine News(10 mins):
(Date:6/26/2016)... One of Australia,s successful biotechnology scientists, Dr ... biotechnology company, Noxopharm Limited [ABN 50 608 966 123] ("Noxopharm"). Noxopharm ... on the ASX. Noxopharm is a clinic-ready company with ... 1 clinical study later this year. ... problems facing cancer patients - the ability of cancers to become ...
(Date:6/26/2016)... , June 27, 2016 Jazz Pharmaceuticals ... waiting period under the Hart-Scott-Rodino Antitrust Improvements Act of ... acquisition of Celator Pharmaceuticals, Inc. ("Celator"; Nasdaq: ... p.m. (Eastern Daylight Time). As previously announced ... into a definitive merger agreement under which Jazz Pharmaceuticals ...
(Date:6/26/2016)... OTTAWA, Ontario , June 27, 2016  VMS ... the Company,s Board will take whatever measures required to ... the Company,s stock which is currently listed on the ... S Wexler, Company Chairman and CEO, "We are seeing ... be difficult to understand, not only by the Company, ...
Breaking Medicine Technology: