Navigation Links
UT Dallas study suggests new approach to fight lung cancer
Date:6/18/2013

Recent research has shown that cancer cells have a much different and more complex metabolism than normal cells. Now, scientists at The University of Texas at Dallas have found that exploiting these differences might provide a new strategy to combat lung cancer.

In an article published online May 21 in the journal PLOS ONE, UT Dallas researchers compared the metabolic characteristics of non-small-cell lung cancer cells with normal lung cells taken from the same patient.

They found that the cancer cells consumed substantially more oxygen than normal cells, about two and a half times as much. The lung cancer cells also outpaced their normal counterparts in synthesizing a critical chemical called heme.

Heme is an iron-containing molecule that is a component of a variety of hemoproteins, which transport, store and use oxygen throughout the body, among other functions. These proteins directly regulate many processes involved in oxygen metabolism, converting oxygen to the energy that cells need to thrive. For example, heme binds to and transports oxygen to cells via the familiar hemoglobin protein.

"We reasoned that the enhanced oxygen consumption we found in lung cancer cells might be attributable to increased levels of heme and hemoproteins," said Dr. Li Zhang, professor of molecular and cell biology at UT Dallas and senior author of the paper.

To test this possibility, Zhang and biology graduate student Jagmohan Hooda measured and compared the levels of heme that lung cancer cells synthesize and the amount that normal lung cells make.

"All cells need a certain level of heme, but our findings indicate that normal cells need much less heme compared to cancer cells," Zhang said. "We think a high level of heme in cancer cells results in a lot more hemoproteins, which metabolize oxygen and produce more cellular energy. That then drives the cancer cells to proliferate, to migrate and to form colonies.

"Cancer cells not only make significantly more heme, we also found they uptake more heme from the blood," said Zhang, who holds the Cecil H. and Ida Green Distinguished Chair in Systems Biology Science.

Zhang and Hooda then treated the matched set of lung cancer and normal lung cells with a heme inhibitor called succinyl acetone. The chemical blocks cells from synthesizing heme.

Other researchers have previously studied the ability of succinyl acetone to inhibit growth of various types of cancer cells, but until the UT Dallas study, Zhang said it was not known whether those effects were unique to cancer in general or how the compound might affect normal cells.

"Before our study, scientists didn't know whether there was any difference in effect between cancer cells and normal cells," Zhang said. "Now we know that this compound doesn't have much effect on normal cells, but it does have an effect on lung cancer cells."

Inhibiting the cancer cells' ability to produce heme affected those cells dramatically, said Hooda, who was the lead author of the study.

"Suppressing heme availability reduced the lung cancer cells' ability to use oxygen, and hence the cells' ability to proliferate and migrate," he said. "The cultured cancer cells we studied stopped proliferating and eventually died."

Zhang said a key finding was that normal cells don't need that much heme to function properly.

"When you inhibit heme synthesis or deplete heme, it doesn't affect normal cells too much," she said. "It selectively affects cancer cells. That's the beauty of our work.

"Because inhibiting heme effectively arrested the progression of lung cancer cells, our findings could positively impact research on lung cancer biology and therapeutics."

The National Cancer Institute estimates that 228,000 new cases of lung cancer will be diagnosed and more than 159,000 deaths from the disease will occur in the U.S. in 2013.

Although more research is needed before new therapies might be developed from the findings, Hooda said the heme-inhibiting technique would likely not be toxic to humans, noting that succinyl acetone would not need to eliminate all heme synthesis in the body.

"Even after lowering heme levels to the point that cancer cells are affected, it's likely that normal cells would live on with a small amount of heme," Hooda said.


'/>"/>

Contact: Amanda Siegfried
amanda.siegfried@utdallas.edu
972-883-4335
University of Texas at Dallas
Source:Eurekalert

Related medicine news :

1. Texas Back Institute Becomes Official Spine Specialist for FC Dallas and the Frisco RoughRiders
2. Dallas-Fort Worth Brace for West Nile Spraying
3. Dallas, Fort Worth Brace for West Nile Spraying
4. UT Dallas engineers identify material that reduces pollution from diesel engines
5. Dallas Launches Insecticide Spraying Against West Nile Virus
6. UT Southwestern named the official health care team of the Dallas Stars
7. Group Insurance Brokers Give Back to Dallas Non-Profits and Military Fund
8. Artisan Business Group to Host EB-5 Investment Workshop in Dallas January 16, 2013
9. Eco Smart Energy, LLC Successfully Installs Eco-Friendly, Cost Saving Sun Equinox System at Dallas Stars’ Dr. Pepper StarCenter
10. Del Taco Connects With Itxtdeals.com to Expand Text Message Marketing to Dallas-Fort Worth
11. Students in Educational First Steps Assisted Centers Show Persistent Benefits Far Beyond Early Childhood According to University of Texas at Dallas Study
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/23/2017)... , ... March 23, 2017 , ... ... of SmartBen NOW, an innovative mobile app and centralized benefits dashboard solving one ... critical information securely from multiple locations. For the first time, employees can access ...
(Date:3/23/2017)... ... March 23, 2017 , ... The TouchPoint Solution, home ... world to manage stress and anxiety. , “Buzzies change the way we interact ... co-founder of Buzzies. , Since its launch date in December 2016, The TouchPoint Solution ...
(Date:3/23/2017)... ... 23, 2017 , ... Altec Products, Inc. , a ... their 2016 Microsoft Dynamics Partner of the Year at DocLink Evolution , ... recognizes The Resource Group for their outstanding relationship with Altec and their ability ...
(Date:3/23/2017)... ... March 23, 2017 , ... According to the National ... sleep is likely not the only cause of the sunken-eye look, which can include ... look older or in poor health are likely due to genetics, dehydration, allergies, and ...
(Date:3/23/2017)... El Segundo, CA (PRWEB) , ... March 23, ... ... Verisys FACIS Monthly Monitoring Healthcare products at competitive pricing. ... primary source sanctions, Exclusions, Debarments, License restrictions and Disciplinary actions. , “We are ...
Breaking Medicine News(10 mins):
(Date:3/23/2017)... , March 23, 2017  Ethicon* today ... Medical, Inc., a privately held medical device company ... System for the surgical treatment of Gastroesophageal Reflux ... strategy of expanding its portfolio of minimally invasive ... medical conditions. Financial terms of the transaction have ...
(Date:3/23/2017)... , March 23, 2017 CENTRO DE ... article 157, paragraph 4 of Law 6,404/76 and Instruction ... hereby informs its shareholders and the market in general ... its subsidiary Centro de Diagnosticos por Imagem Ltda. (" ... 100% interest in RADIOLOGISTAS ASSOCIADOS LTDA. (" Partnership " ...
(Date:3/23/2017)... 23, 2017  A new genetic test has ... of individuals who carry HLA-B*15:02 and ... yet potentially deadly side effect of certain medications ... gene HLA-B*15:02 is strongly associated with ... syndrome and toxic epidermal necrolysis in patients treated ...
Breaking Medicine Technology: