Navigation Links
UCSF diabetes, brain tumor stem cell grants to drive development of therapies
Date:10/29/2009

Two teams of UCSF scientists have received grants from the California Institute for Regenerative Medicine to advance their stem cell based strategies for treating diabetes and brain tumors. The intent of the grants is for teams to file new drug applications to the U.S. Food and Drug Administration within four years, driving potential therapies toward clinical trials.

The two grants, awarded to collaborative scientific teams, total $39.2 million.

The diabetes grant is co-led by investigator Jeffrey Bluestone, PhD, director of the UCSF Diabetes Center, in collaboration with Novocell, Inc. Other UCSF members of the team are Michael German, MD, PhD; Matthias Hebrok, PhD; and Qizhi Tang, PhD.

The brain tumor grant is led by Mitchel Berger, MD, chair of the UCSF Department of Neurosurgery, in collaboration with Ludwig Institute for Cancer Research and Burnham Institute for Medical Research. Other UCSF members of the team are C. David James, PhD; Tomoko Ozawa, MD, PhD; Russell Pieper, PhD; Mei-Yin Polley, PhD; Michael Prados, MD; and Elizabeth Read, MD.

The projects are among 14 disease team grants announced today (Oct. 28, 2009) by CIRM. The grants focus on conditions ranging from brain tumors and diabetes to HIV, heart damage and amyotrophic lateral sclerosis, among others. They are the first issued by CIRM with the explicit intent of driving the development of therapies for approval by FDA for testing in clinical trials.

The multidisciplinary collaborations are intended to hasten the clinical trial development process, avoiding mistakes sometimes discovered late in the game and ensuring that clinically relevant issues are considered early.

The diabetes team, lauded as a "dream team" by the CIRM working group reviewers, received $19,999,937 over four years. The goal is to encapsulate islet progenitor cells generated from human embryonic stem cells in a durable, retrievable device and implant them into patients. The cells, which differentiate into glucose responsive islet beta cells after transplantation in vivo, have proven to be a successful strategy in treating rodents with chemically-induced diabetes.

"The critical early proof-of-concept milestones have been completed," says Bluestone. "Now we need to perform the manufacturing and laboratory testing required to assure reliable production of a safe and effective product, thereby generating the data needed to seek Food and Drug Administration approval to test the therapy in humans."

"This is a very exciting early pre-clinical step, but, as is always the case in science, there are likely to be unexpected hurdles as we move forward," he says.

If successful, a Phase 1 safety trial in Type 1 diabetic patients could begin in three-four years from the initiation of the project.

The brain tumor team, which received $19,162,435, was characterized by the CIRM leaders as "pioneers and leaders in their respective fields." The team will refine their strategy of using adult and fetal neural stem cells, as well as mesenchymal stem cells, genetically engineered to contain a tumor-killing gene to home in on glioblastoma multiforme, the most common and aggressive form of brain tumor. The studies in rodents engineered to develop human brain tumors were successful.

The strategy is based on the team's discovery that neural stem cells naturally seek out brain tumor cells and other types of disease cells. "If successful, this approach would be an important advance in treating brain tumors of all kinds," says Berger. "Current approaches -- surgery, radiation, pharmacological drugs and gene therapies -- are unable to reach widely disseminated tumor cells that become dispersed within normal brain structures."

If the strategy is approved by the FDA, it would be tested first in patients with recurring glioblastoma multiforme.

Diabetes Disease Team grant

In Type 1 diabetes, the body's immune system turns against itself, destroying pancreatic beta cells. These cells produce insulin, a hormone that controls the amount of sugar in the blood stream. In Type 2 diabetes, caused by lifestyle factors such as obesity, the body's ability to respond to, or produce insulin is reduced. In both cases, without insulin, blood sugar can increase to toxic levels. While pharmaceutical insulin is commonly used to control diabetes, it does not sufficiently replace beta cells, and the adverse short- and long-term effects of diabetes remain.

The diabetes disease team has developed a strategy in which they prompt human embryonic stem cells to differentiate into islet progenitor cells in the lab and then transplant the cells into rodents, where they differentiate into mature, insulin-producing beta cells.

To prevent the immune system's reaction to the cells -- either the auto-immune attack that would continue to occur in Type 1 diabetics or the normal immune system rejection to foreign cells that occurs in any transplant setting the team has explored two strategies. One involves administering the cells inside a simple device, implantable under the skin. The other involves using next-generation pharmaceuticals, some of which have been approved recently by the FDA, that enable transplantation between unmatched individuals without major side effects.

The work will include identifying the best means for introducing cells into patients.

More on the grant: http://www.cirm.ca.gov/ReviewReports_DR1-01423

Brain Tumor Disease Team grant

The brain tumor disease team will derive human adult and fetal neural stem cells and mesenchymal stem cell lines, each cell line having been proffered as therapeutic, but never having been compared head-to-head in treating tumors. Each cell line will be modified using two therapeutic genes. One of the genes expresses a protein known as TRAIL that specifically kills tumor cells, but does not harm normal cells and tissues. The other expresses cytosine deaminas, an enzyme that converts a non-toxic chemical into a toxic chemotherapeutic.

The goal is to identify the most effective neural stem cell and therapeutic gene combination to advance for clinical trial in patients with brain tumors.

More on the grant: http://www.cirm.ca.gov/ReviewReports_DR1-01426

"These studies are a vital opportunity to explore the behavior of stem cells in patients," says Arnold Kriegstein, MD, PhD, director of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF.


'/>"/>

Contact: Jennifer O'Brien
jobrien@pubaff.ucsf.edu
415-476-2557
University of California - San Francisco
Source:Eurekalert

Related medicine news :

1. Preparation for Natural Disasters Critical for People With Diabetes, Chronic Medical Conditions
2. Health Secretary Promotes Awareness of Diabetes, Urges Healthy Habits
3. With Obesity, Diabetes, and Cardiovascular Disease on the Rise, Physicians Need More Comprehensive Guidelines
4. Diabetes, Growth Disorders Drive Sales of Pediatric Hormone Drugs
5. Coming soon: Cell therapies for diabetes, cancer?
6. Doctors Urged to Look for Link Between Type 2 Diabetes, Sleep Apnea
7. Diabetes, Weight Tied to Male Infertility
8. Overweight Hispanic children at significant risk for pre-diabetes, according to new USC study
9. Second Annual Eye Ball Fights Juvenile Diabetes, Says Oklahoma Academy of Ophthalmology
10. Diabetes, Hypertension Hasten Death in Alzheimers Patients
11. Genetic Link Between Type 1 Diabetes, Celiac Disease Seen
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/24/2016)... , ... June 24, 2016 , ... June 19, 2016 ... dangers associated with chronic pain and the benefits of holistic treatments, Serenity Recovery ... are suffering with Sickle Cell Disease. , Sickle Cell Disease (SCD) is a disorder ...
(Date:6/24/2016)... , ... June 24, 2016 , ... Global law firm ... 2016 Legal Elite. The attorneys chosen by their peers for this recognition are considered ... Seven Greenberg Traurig Shareholders received special honors as members of this year’s Legal Elite ...
(Date:6/24/2016)... ... ... BioMedics, Inc, makers of Topricin and MyPainAway Pain Relief Products, join The ‘Business for a ... an hour by 2020 and then adjusting it yearly to increase at the same rate ... assure the wage floor does not erode again, and make future increases more predictable. , ...
(Date:6/24/2016)... , ... June 24, 2016 , ... ... is proud to recognize Dr. Barry M. Weintraub as a prominent plastic surgeon ... beautiful women in the world, and the most handsome men, look naturally attractive. ...
(Date:6/24/2016)... ... June 24, 2016 , ... National recruitment firm Slone Partners ... extensive sequencing and genomics experience, as Vice President of North American Capital Sales at ... responsible for leading the sales team in the commercialization of the HTG EdgeSeq system ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... Mass. , June 24, 2016   Pulmatrix, ... pharmaceutical company developing innovative inhaled drugs, announced today that ... Russell Investments reconstituted its comprehensive set of ... "This is an important milestone for Pulmatrix," ... will increase shareholder awareness of our progress in developing ...
(Date:6/23/2016)... BEVERLY HILLS, Calif. , June 23, 2016 ... faced the many challenges of the current process. Many of ... option because of the technical difficulties and high laboratory costs ... would have to offer it at such a high cost ... to afford it. Dr. Parsa Zadeh , ...
(Date:6/23/2016)... 2016 Capricor Therapeutics, Inc. ... biotechnology company focused on the discovery, development and ... enrollment in its ongoing randomized HOPE-Duchenne clinical trial ... of its 24-patient target. Capricor expects the trial ... of 2016, and to report top line data ...
Breaking Medicine Technology: