Navigation Links
UCLA researchers' new technique improves accuracy, ease of cancer diagnosis
Date:11/21/2013

A team of researchers from UCLA and Harvard University have demonstrated a technique that, by measuring the physical properties of individual cells in body fluids, can diagnose cancer with a high degree of accuracy.

The technique, which uses a deformability cytometer to analyze individual cells, could reduce the need for more cumbersome diagnostic procedures and the associated costs, while improving accuracy over current methods. The initial clinical study, which analyzed pleural fluid samples from more than 100 patients, was published in the current issue of peer-reviewed journal Science Translational Medicine.

Pleural fluid, a natural lubricant of the lungs as they expand and contract during breathing, is normally present in spaces surrounding the lungs. Medical conditions such as pneumonia, congestive heart failure and cancer can cause an abnormally large buildup of the fluid, which is called a pleural effusion.

When cytopathologists screen for cancer in pleural effusions, they perform a visual analysis of prepared cells extracted from the fluid. Preparing cells for this analysis can involve complicated and time-consuming dyeing or molecular labeling, and the tests often do not definitively determine the presence of tumor cells. As a result, additional costly tests often are required.

The method in the UCLAHarvard study, developed previously by the UCLA researchers, requires little sample preparation, relying instead on the imaging of cells as they flow through in microscale fluid conduits.

Imagine squeezing two balloons, one filled with water and one filled with honey. The balloons would feel different and would deform differently in your grip. The researchers used this principle on the cellular level by using a fluid grip to "squeeze" individual cells that are 10,000 times smaller than balloonsa technique called "deformability cytometry." The amount of a cell's compression can provide insights about the cell's makeup or structure, such as the elasticity of its membrane or the resistance to flow of the DNA or proteins inside it. Cancer cells have a different architecture and are softer than healthy cells and, as a result, "deform" differently.

Using deformability cytometry, researchers can analyze more than 1,000 cells per second as they are suspended in a flowing fluid, providing significantly more detail on the variations within each patient's sample than could be detected using previous physical analysis techniques.

The researchers also noted that the more detailed information they obtained improved the sensitivity of the test: Some patient samples that were not identified as cancerous via traditional methods were found to be so through deformability cytometry. These results were verified six months later.

"Building off of these results, we are starting studies with many more patients to determine if this could be a cost-effective diagnostic tool and provide even more detailed information about cancer origin," said Dino Di Carlo, associate professor of bioengineering at the UCLA Henry Samueli School of Engineering and Applied Science and a co-principal investigator on the research. "It could help to reduce laboratory workload and accelerate diagnosis, as well as offer doctors a new way to improve clinical decision-making."

Dr. Jianyu Rao, professor of pathology and laboratory medicine at the David Geffen School of Medicine at UCLA and the other co-principal investigator on the research, said the technique could potentially be used in a number of clinical settings to help manage cancer patients.

"First, it may increase diagnostic accuracy for the detection of cancer cells in body fluid samples," Rao said. "Second, it may provide a method of initial screening for cancer in body fluid samples in places with limited resources or a lack of experienced cytologists. Third, it may provide a test to determine the drug sensitivity of cancer cells."

Rao added that additional large-scale clinical studies are needed to further validate this technique for each of those applications.

Di Carlo and Rao are members of the UCLA Jonsson Comprehensive Cancer Center, and of the California NanoSystems Institute at UCLA.

The paper's lead author was Henry TK Tse, a postdoctoral scholar in bioengineering at UCLA.

Using the large amount of cellular data, co-authors Ryan Adams, an assistant professor of computer science at the Harvard School of Engineering and Applied Sciences, and Harvard undergraduate student Yo Sup Moon connected how the distribution of individual cells' properties correlate with a cancer diagnosis.


'/>"/>

Contact: Matthew Chin
mchin@support.ucla.edu
310-206-0680
University of California - Los Angeles
Source:Eurekalert

Related medicine news :

1. NIH awards $20 million over 5 years to train next generation of global health researchers
2. Researchers develop a new cell and animal model of inflammatory breast cancer
3. Researchers uncover a viable way for colorectal cancer patients to overcome drug resistance
4. Researchers Find Gene Mutations That May Be a Key to Autism
5. Researchers find evidence of banned antibiotics in poultry products
6. NJ stroke researchers report advances in spatial neglect research at AAN Conference
7. Autism by the numbers: Yale researchers examine impact of new diagnostic criteria
8. Researchers Map Brain Regions Linked to Intelligence
9. Researchers ID Genes That May Determine Mental Illness
10. Researchers Develop Blood Test for Depression
11. University of Cincinnati researchers win $3.7M grant from US Department of Defense
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2017)... ... 26, 2017 , ... New SUPRO® XT55 Isolated Soy ... by helping beverage manufacturers more effectively manage protein costs. “Soy protein has always ... well as more stable pricing over time. Now it’s even more relevant as ...
(Date:4/25/2017)... ... April 25, 2017 , ... Bellus ... that’s the first in a new class of photodynamic cosmetics (PDC). , Allumera® ... skin, visibly reduce outward signs of aging, and minimize the appearance of pores ...
(Date:4/25/2017)... ... April 25, 2017 , ... ... to raising awareness for Duchenne muscular dystrophy, and funding for Duchenne research, ... cells) Phase I/II HOPE clinical trial in Duchenne announced today. , Coalition ...
(Date:4/25/2017)... ... April 25, 2017 , ... A recent ... test score performance for the 2015-16 school year across Wisconsin’s public schools, charter ... it highlights important patterns in student test score performance, the report’s limited analyses ...
(Date:4/25/2017)... ... April 25, 2017 , ... Patients who ... achieves results in a fraction of the time as traditional braces – Wilckodontics®. ... Dental Specialists, now offers this revolutionary treatment with or without a referral. ...
Breaking Medicine News(10 mins):
(Date:4/20/2017)... , April 20, 2017 Research and ... Market Size, Market Share, Application Analysis, Regional Outlook, Growth Trends, ... report to their offering. ... The global pharmacogenomics market was valued at US$ 7,167.6 Mn ... by 2024, expanding at a CAGR of 5.6% from 2016 ...
(Date:4/19/2017)... 19, 2017 /PRNewswire/ - CRH Medical Corporation (TSX: CRH) (NYSE MKT: CRHM) (the ... Co. Healthcare Investor Conference 2017 at the Sheraton Hotel in ... Chief Executive Officer of the Company is scheduled to present on ... Bear and the Chairman of the Board, Tony Holler ... ...
(Date:4/19/2017)... -- Global Surgical Drainage Device Market: Overview ... excess liquid and air. The fluid to be drained ... Surgical drains are used in a wide variety of ... surgery, neurosurgery, plastic surgery etc. Common use of surgical ... fluid e.g. blood or pus. Surgical drains are available ...
Breaking Medicine Technology: