Navigation Links
Tumors 'light up' with new, unique imaging system using scorpion venom protein and a laser

LOS ANGELES (Feb. 24, 2014) Researchers at the Cedars-Sinai Maxine Dunitz Neurosurgical Institute and Department of Neurosurgery have developed a unique, compact, relatively inexpensive imaging device to "light up" malignant brain tumors and other cancers.

The experimental system consists of a special camera designed and developed at Cedars-Sinai and a new, targeted imaging agent based on a synthetic version of a small protein a peptide found in the venom of the deathstalker scorpion. The imaging agent, Tumor Paint BLZ-100, a product of Blaze Bioscience Inc., homes to brain tumor cells. When stimulated by a laser in the near-infrared part of the spectrum, it emits a glow that is invisible to the eye but can be captured by the camera.

Results of animal studies, published as the feature article in the February issue of Neurosurgical Focus, provide the basis for the launch of human clinical trials. The system would be used during surgery to determine if it enables neurosurgeons to remove more tumor and spare more healthy tissue.

Malignant brain tumors called gliomas are among the most lethal tumors, with patients typically surviving about 15 months after diagnosis. "We know that survival statistics increase if we can remove all of a tumor, but it is impossible to visualize with the naked eye where tumor stops and brain tissue starts, and current imaging systems don't provide a definitive view," said Keith Black, MD, chair and professor of the Department of Neurosurgery, the article's senior author.

"Gliomas have tentacles that invade normal tissue and present big challenges for neurosurgeons: Taking out too much normal brain tissue can have catastrophic consequences, but stopping short of total removal gives remaining cancer cells a head start on growing back. That's why we have worked to develop imaging systems that will provide a clear distinction during surgery between diseased tissue and normal brain," said Black, director of the Maxine Dunitz Neurosurgical Institute, director of the Johnnie L. Cochran, Jr. Brain Tumor Center and the Ruth and Lawrence Harvey Chair in Neuroscience.

In studies in laboratory mice with implanted human brain tumors, the new device clearly delineated tumor tissue from normal brain tissue. Also, with near-infrared light's ability to penetrate deep into the tissue, the system identified tumors that had migrated away from the main tumor and would have evaded detection.

Pramod Butte, MBBS, PhD, research scientist and assistant professor in the Department of Neurosurgery, the article's first author, said the tumor-imaging process consists of two parts: deploying a fluorescent "dye" that sticks only to cancer cells, and using a laser and a special camera to make an invisible image visible.

To get the dye to the tumor, it is linked to a peptide called chlorotoxin, which, contrary to its name, is not toxic. It completely ignores normal tissue but seeks out and binds to a variety of malignant tumor cells. It first was derived from the venom of the yellow Israeli scorpion, also called the deathstalker. Article co-author Adam Mamelak, MD, professor of neurosurgery and director of functional neurosurgery, has studied the synthetic version of chlorotoxin and its tumor-targeting properties for more than a decade.

In this study, chlorotoxin was bonded to a molecule, indocyanine green, a near-infrared dye, a version of which already is approved by the Food and Drug Administration. The chlorotoxin-indocyanine green combination Tumor Paint BLZ-100 emits a glow when stimulated by near-infrared light.

"Injected intravenously, the chlorotoxin seeks out the brain tumor, carrying with it indocyanine green, which has been used in a variety of medical imaging applications. When we shine a near-infrared laser on the tissue, the tumor glows. But the glow emitted by the tumor is invisible to the human eye," said Butte, whose MBBS is India's equivalent of an MD. The camera device, designed in Butte's lab, solves this problem by capturing two images and combining them on a high-definition monitor.

"Other experimental systems we have seen which use different tumor-targeting methods are larger and bulkier because they consist of two cameras," Butte said. "Our single-camera device takes both near-infrared and white light images simultaneously. This is achieved by alternately strobing the laser and normal white lights at very high speeds. The eye just sees normal light, but the camera is capturing white light once, near-infrared light next, over and over. We then superimpose the two HD images. The image from the laser shows the tumor, and the image produced from white light shows the visible 'landscape' so we can see where the tumor is in context to what we actually can see."

The prototype is compact, but the authors said they are working to make the next generations even smaller, lighter and portable so the device will require very little space in operating room, allowing the neurosurgeon to focus on the operating microscope and give little attention on the imaging system. "We hope that eventually the camera can be transported in a small bag, but we are not sacrificing image quality for portability," Butte said. "In fact, most systems that use two cameras lose a lot of light. But because of the special filters we use and the way we arrange them, we lose very little light. And from what we have seen and tested, our device provides about 10 times greater sensitivity and contrast than others."

In an editorial accompanying the journal article, David W. Roberts, MD, from the Section of Neurosurgery at the Geisel School of Medicine at Dartmouth College, said the Cedars-Sinai "paper presents a newer direction in which fluorescence-guided surgery may well be headed." He noted that the researchers overcame one of the limitations of near-infrared technology that it is outside of the visible portion of the spectrum. "In this regard, Butte and colleagues have contributed to the field with their implementation of an optical system that is sensitive and efficient. They have characterized well its performance in phantom and animal models, demonstrating proof-of-concept and feasibility."


Contact: Sandy Van
Cedars-Sinai Medical Center

Related medicine news :

1. Targeting tumors: Ion beam accelerators take aim at cancer
2. DNA-built nanostructures safely target, image cancer tumors
3. NIH scientists map gene changes driving tumors in common pediatric soft-tissue cancer
4. Neuro-Oncology Pioneer Who Defined Standard of Care for Brain and Spinal Tumors Joins Capital Institute for Neurosciences
5. Study finds that carbon monoxide can help shrink tumors and amplify effectiveness of chemotherapy
6. Why tumors become resistant to chemotherapy?
7. New immunotherapy for malignant brain tumors
8. Biomaterial-delivered chemotherapy could provide final blow to brain tumors
9. Oxygen levels in tumors affect response to treatment
10. Special camera detects tumors
11. Cell Phone Radiation Lawsuit Update: Bernstein Liebhard LLP Comments on Latest Research into Cell Phone Use and Brain Tumors
Post Your Comments:
(Date:11/28/2015)... ... November 28, 2015 , ... StatRad ... has added Chris Hafey and Claude Hooton to its board of directors. The ... North America (RSNA) 2015 Annual Meeting and continues to strategically transform its focus ...
(Date:11/28/2015)... ... ... Trying to relax on a couch can actually be uncomfortable, so an ... due to personal experience with a bad back," he said. , This easy-to-use, versatile ... as increases support. It also makes it easier to eat, do other activities and ...
(Date:11/28/2015)... ... November 28, 2015 , ... Pixel Film Studios is back ... to choose from, the possibilities are endless. Users have full control over angle of ... Pulse masking effects, users are sure to get heads to turn. , ProPanel: Pulse ...
(Date:11/27/2015)... ... 27, 2015 , ... According to an article published November 13th ... in Washington D.C. revolved around the fact that proper dental care, both at-home and ... the link between periodontal disease (more commonly referred to as gum disease) and diabetes. ...
(Date:11/27/2015)... CO (PRWEB) , ... November 27, 2015 , ... According ... cities are not changing the way that they are handling security in light of ... police and security presence in an attempt to stop an attack from reaching U.S. ...
Breaking Medicine News(10 mins):
(Date:11/27/2015)... 27, 2015 Ein neuer ... Krebs.   --> Ein neuer Kombinationsansatz ...   --> Ein neuer Kombinationsansatz ...   Clinical Cancer Research vom ... Cancer Research vom 6. November 2015 berichtet. ...
(Date:11/26/2015)... India , November 27, ... --> --> ... personal emergency response system (PERS) ... steadily for 5 years with ... region expected to see a ...
(Date:11/26/2015)... , Nederland, November 26, 2015 ... Een nieuwe aanpak combineert immunotherapie met ... kanker. ) ...      (Photo: ) ... Leids Universitair Medisch Centrum (LUMC) ...
Breaking Medicine Technology: