Navigation Links
Syracuse University researchers build a new surface material that resists biofilm growth

This is the tale of two biological substancescells from mammals and bacteria. It's a story about the havoc these microscopic entities can wreak on all manner of surfaces, from mighty ships to teeth and medical devices, and how two Syracuse University researchers are discovering new ways prevent the damage.

Under moist conditions, bacteria form what scientists call biofilmsa sticky, slimy buildup on almost any kind of surface. Biofilms can corrode the hulls of ships, produce green slime on rocks, pollute drinking water systems, form plaque on teeth, and stick to medical devices implanted in humans, resulting in infection or rejection.

It's critically important, therefore, for scientists to gain a better understanding of how biofilms are formed and use that knowledge to develop surfaces that will resist such biofouling. In an unusual, interdisciplinary collaboration, SU researchers have found that if you can prevent protein from sticking to a surface, you can prevent both bacteria and mammalian cells from doing likewise. In the process, they developed a novel, surface technology that scientists can use to study biofilms in ways that were not previously possible.

In a series of experiments, Yan-Yeung Luk, assistant professor of chemistry in SU's College of Arts and Sciences; and Dacheng Ren, assistant professor of biomedical engineering in the L.C. Smith College of Engineering and Computer Science, created a surface material on which they could manipulate and confine biofilm growth four times longer than current technologies. By further manipulating the chemical makeup of the surface, the scientists uncovered how mammalian cells and bacteria adhere to surfaces.

Their work, which is supported by grants from the National Science Foundation, was recently reported in the February 4 online version of "ChemComm," the journal of the Royal Society of Chemistry (forthcoming in print); and in the January 9 online version of "Langmuir," published by the American Chemical Society (forthcoming in print).

Luk and Ren began collaborating about three years ago when they discovered a common thread in their individual research effortsthe desire to chemically modify surfaces to prevent biofouling. They went on to create a surface that seems to repel both bacteria and mammalian cells when the molecule is chemically applied to a surface. The surface used in the laboratory is a thin film of gold coated on a glass slide.

They explain their research in terms of land, soil, and plants. "You start with a glass surface (the land); apply a thin film of gold to that surface, about 20 nanometers or five atoms thick (the soil); then top the gold with the molecules we created in the laboratory (the trees)," Luk says. "The goal is to see if the special molecules (trees) can resist or prevent protein from sticking to the overall surface. Put another way, do the trees provide an inhospitable environment for birds (the biofilm) and therefore prevent them from roosting en mass?"

The surface the researchers created in the laboratory was able to confine the growth of bacteria to surface patterns of desired, two-dimensional shapes. In other words, the researchers were able to control the growth of the biofilm with the surface material, allowing the biofilm to form in some places and restricting its growth in others. Additionally, the scientists found that when confined in two dimensions, the biofilm grew in a vertical direction.

In other experiments, the scientists discovered important differences in the way mammalian cells and bacteria attach to a surface. "Our surfaces are able to reveal that mammalian cell adhesion requires the existence of an anchor, while bacteria can adhere to almost any sticky surface," Luk says.

The researchers' discoveries and the surface technology they developed can be used to answer critical questions that previously eluded scientists and lead to the development of improved medical implants and to new ways to prevent biofouling.

"This level of surface control has never before been achieved," Ren says. "We hope that what we have learned in the laboratory will help answer other fundamental questions in surface materials research and lead to the production of new materials for use in medicine and industry."


Contact: Judy Holmes
Syracuse University

Related medicine news :

1. Jeremy Gilbert of Syracuse University to Chair Conference on Materials for Medical Devices
2. Syracuse School Wins National Got Milk?(R) Refuel Your School Contest
3. TB vaccine developed at McMaster University in Canada
4. Centocor R&D and University of Michigan Forge New Model for Academic/Industry Partnerships
5. Western Governors University Addresses Rising Demand for Healthcare IT Professionals with B.S. in Health Informatics
6. DeVry University announces Employment Gap Scholarship program to aid displaced workers
7. University of Notre Dame Chooses Latest Technology From Carestream Molecular Imaging For Disease Research
8. University of Pennsylvania researchers find that the unexpected is a key to human learning
9. NorthShore University HealthSystem Launches Diabetes Outreach Program for Lake County's Medically Underserved
10. Dallas To Host Intensive Norvax University Insurance Agent Sales Training and Web Marketing Conference on March 26
11. University of Maryland Business School Continues Executive Education Leadership With Maryland State Medical Society Partnership
Post Your Comments:
(Date:6/25/2016)... ... 25, 2016 , ... Austin residents seeking Mohs surgery services, can now turn ... to Dr. Russell Peckham for medical and surgical dermatology. , Dr. Dorsey brings specialization ... selective fellowship in Mohs Micrographic Surgery completed by Dr. Dorsey was under the direction ...
(Date:6/25/2016)... ... June 25, 2016 , ... As a lifelong Southern Californian, Dr. Omkar ... M.D from the David Geffen School of Medicine at UCLA. He trained in Internal ... complete his fellowship in hematology/oncology at the UCLA-Olive View-Cedars Sinai program where he had ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... A recent ... that most people are unfamiliar with. The article goes on to state that individuals ... also many of these less common operations such as calf and cheek reduction. The ...
(Date:6/24/2016)... ... 2016 , ... The Pulmonary Hypertension Association (PHA) learned during ... two significant new grants to support its work to advance research and patient ... recognizing patients, medical professionals and scientists for their work in fighting pulmonary hypertension ...
(Date:6/24/2016)... Rhinebeck, NY (PRWEB) , ... June 24, 2016 , ... Topical BioMedics, Inc, makers of ... of companies that call for a minimum wage raise to $12 an hour by 2020 ... wage. This will restore the lost value of the minimum wage, assure the wage floor ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... Mass. , June 24, 2016   ... Spaulding Rehabilitation Network,s Dean Center for Tick ... Physical Medicine and Rehabilitation, MIT Hacking Medicine, University ... for Innovation, today announced the five finalists of ... for Lyme disease.  More than 100 scientists, clinicians, ...
(Date:6/24/2016)... Research and Markets has ... 2015-2025: Applications, Technologies, Forecasts" report to their ... Electronics, Smart Skin, Structural Health Monitoring, Composite Smart ... electronics involves electronic and/or electrical components and circuits ... structures such as vehicle bodies or conformally placed ...
(Date:6/24/2016)... -- Dehaier Medical Systems Ltd. (NASDAQ: DHRM ... sells medical devices and wearable sleep respiratory products in ... agreement with Hongyuan Supply Chain Management Co., Ltd. (hereinafter ... 2016, to develop Dehaier,s new Internet medical technology business. ... leverage Hongyuan Supply Chain,s sales platform to reach Dehaier,s ...
Breaking Medicine Technology: