Navigation Links
Synthetic gene circuit allows precise dosing of gene expression

HOUSTON - Researchers have crafted a gene circuit that permits precise tuning of a gene's expression in a cell, an advance that should allow for more accurate analysis of the gene's role in normal and abnormal cellular function.

This gene "dosing effect" is achieved by installing a negative feedback loop in the synthetic gene circuit, a concept similar to signal distortion control in electronics, a team led by scientists at The University of Texas M. D. Anderson Cancer Center reports this week in the Online Early Edition of the Proceedings of the National Academy of Sciences.

"To understand what a gene does, you need to change its expression and observe the results. Present methods do not allow close control of gene expression," said senior author Gbor Balzsi, Ph.D., assistant professor in M. D. Anderson's Department of Systems Biology.

Knocking out genes is an all-or-nothing approach, and suppressing them with small interfering RNA has undesired effects. Transfecting cells with a gene expression vector overexpresses the gene, but still in an uncontrolled way, Balzsi noted. The synthetic gene expression system the researchers developed in a yeast model would allow more detailed investigation of a gene's effects.

"Say you have a gene that is involved in resistance to drugs, and you want to know how much protection the cell gets at different levels of expression," Balzsi said. "You place the gene circuit in the cells set at first to fully repress the protective gene. You then tune gene expression to the desired level and add chemotherapy to the cell culture, to discover the relationship between the gene and cellular defense against the drug."

The gene expression circuit built by Balzsi and colleagues produces a linear relationship between the dose of an inducer that regulates the circuit and the level of gene expression.

Gene network built to repress

The team first synthesized a gene network designed to repress yEGFP, a fluorescent reporter gene whose presence can be detected in each cell in a culture by flow cytometry. The gene circuit was then added to the growth medium, where it diffused into cells and blended into the yeast's DNA.

The gene circuit starts with a promoter that launches the tetracycline repressor gene, which then blocks yEGFP via a promoter for that gene, shutting down its expression. Adding anhydrotetracycline (ATc) to the cell culture in measured doses stifles the tetracycline repressor and permits expression of yEGFP.

When ATc was added to the culture, there was little or no response at low dosages, then a sudden, steep increase in yEGFP, which quickly hit a plateau at saturation. "This is called a sigmoidal response, which does not follow in a linear fashion the dose of ATc," Balzsi said.

Similar to distortion and an amplifier

The team then made the promoter for the repressor identical to that used for yEGFP. This, in effect, turns the tetracycline repressor back on itself, a negative feedback loop that results in automatic reduction of the repressor when it reaches high levels and an increase when levels drop.

They found that adding negative autoregulation makes yEGFP linearly responsive to ATc dose. So a 20 percent increase in ATc yields a 20 percent rise in gene expression, and so on.

Balzsi compares this to dealing with distortion in electronic circuits. Amplifiers strengthen a signal, but also distort it. By distorting the signal before it enters the amplifier in the opposite way that the amplifier will distort it, the two distortions cancel each other out, resulting in a clear signal. Making both gene promoters identical has the same effect in the gene network.

This linear dose-response relationship works while it achieves similar expression levels of yEGFP in all cells in the culture. Cell-to-cell differences are large in cell cultures treated with the gene circuit that lacks negative feedback, with some cells expressing a great deal of yEGFP and others very little. The feedback loop leveled cell-to-cell differences, affecting them all at once, improving the dose effect.

After their first experiments with the synthetic gene circuit, the researchers constructed a mathematical model to predict gene expression response in the presence of negative autoregulation. The circuit with the negative autoregulation performed as predicted by the model.

Balzsi said the team is working on a gene circuit that will work as well in a mammalian cell model. Balzsi and colleagues create new gene sequences, or circuits, part of the emerging field of synthetic biology - the application of engineering principles to design and build new biological parts and devices


Contact: Scott Merville
University of Texas M. D. Anderson Cancer Center

Related medicine news :

1. CPC Pursues Development of Proprietary Synthetic Sealants as part of MedClose(TM) Global Commercialization
2. Brookhaven Lab and BioSET patent a synthetic peptide that enhances bone growth
3. Synthetic HDL Could Fight Heart Disease
4. Synthetic HDL: A new weapon to fight cholesterol problems
5. New center launched today to spearhead UK research in synthetic biology
6. Researcher refining synthetic molecules to prevent HIV resistance
7. FDA Approves Durameds Synthetic Conjugated Estrogens-A Vaginal Cream
8. Caltech engineers build first-ever multi-input plug-and-play synthetic RNA device
9. Novel Solid-State Laser Design Based on Synthetic Diamond From Element Six Opens up New Applications
10. Pioneering Solutions To Fight Staph, MRSA Infections in Sports Facilities and Synthetic Turf Fields
11. Safety of Synthetic Turf Validated by NJ Test Results
Post Your Comments:
(Date:11/25/2015)... (PRWEB) , ... November 25, 2015 , ... ... will provide scholarships for people struggling with eating disorders as a result of ... the second annual event, held at Fox Run Golf Club in Eureka, will ...
(Date:11/25/2015)... ... November 25, 2015 , ... Privately owned Contract Development and ... of its current state of the art research, development and manufacturing facility outside ... its manufacturing capacity as well as to support its clients’ growing research and ...
(Date:11/25/2015)... ... November 25, 2015 , ... ... Complex (TSC), as well as raising public awareness of the disorder while helping ... a third donation of $35,000 to bolster progress at the Tuberous Sclerosis Complex ...
(Date:11/25/2015)... (PRWEB) , ... November 25, 2015 , ... ... treatment, is offering lower prices in an early celebration of the early holiday ... promotional price of $29.95 each (normally $33.95 ea). Black Friday promotional pricing is ...
(Date:11/24/2015)... ... November 24, 2015 , ... Dr. Todd S. Afferica, a noted ... to many of his patients. Dr. Afferica now uses the BIOLASE WaterLase iPlus 2.0™ ... of time the doctor uses other traditional cutting tools, such as the scalpel and ...
Breaking Medicine News(10 mins):
(Date:11/25/2015)... DUBLIN , Nov. 25, 2015 Allergan plc ... an agreement with the New York State ... 2 of the Sherman Act, and other statutes with the ... in February 2014, to cease marketing and selling the now ... of settlement, Allergan admits no liability, has released its counterclaims ...
(Date:11/25/2015)... -- Allergan plc (NYSE: AGN ), a ... start-up  biotechnology company focused on the development of ... by the F-Prime Biomedical Research Initiative (FBRI), today ... collaboration to support the discovery and development of ... Obsessive Compulsive disorders (OCD). ...
(Date:11/25/2015)... NEW YORK , November 25, 2015 ... global market of self-monitoring blood glucose devices was valued ... to grow with a CAGR of 5.7% during 2015 ... increasing geriatric population and increasing prevalence of diabetes. In ... about diabetes care is also contributing to the growth ...
Breaking Medicine Technology: