Navigation Links
Study yields clues about the evolution of epilepsy
Date:1/6/2009

Troy, N.Y. Two children have a seizure. One child never has another seizure. Twenty years later, the other child has a series of seizures and is diagnosed with epilepsy. A study being led by researchers at Rensselaer Polytechnic Institute is looking at what could possibly happen in the development of these two children that would lead to such extreme variations in their neurologic health.

The findings reveal that genetic predisposition, coupled with the occurrence of a patient's first seizures, could set the neurologic stage for the later onset of epilepsy. The researchers are now on the hunt to determine what blip in the genetic code could separate a child who will develop epilepsy from a child who will not.

The team's latest research, which is being published in the January edition of Experimental Neurology, is led by Russell Ferland, an assistant professor of biology at Rensselaer within the Center for Biotechnology and Interdisciplinary Studies, and his graduate student Dominick Papandrea, in collaboration with Bruce Herron of the University at Albany and the Wadsworth Center.

To help understand seizure behavior in humans, the researchers first looked to understand the behavior in animal models. In particular, they analyzed specific strains of mice that exhibit striking seizure predispositions, which could offer a glimpse into why epilepsy only develops in certain patients following initial seizures.

One strain is predisposed to have a high resistance to seizures, but that resistance decreases over time as multiple seizures occur. When this strain was examined for seizures after a month, the resistance remained low, indicating a long-lasting change in seizure resistance. Strikingly, the type of seizure was remarkably different after the one-month rest period, Ferland said. Prior to the rest period, the seizures were classic clonic seizures, involving rapid shaking of the limbs. After the rest period, the seizures were even more severe.

"These changes in seizure behavior show us that a different portion of the brain is being changed and activated during the rest period," Ferland said. He and his research team then began working to determine what change in the brain was induced during the initial seizures. "Those initial seizures created a lasting change in the brain."

But, as Ferland's group discovered, this was not the case with all mice. In their most recent paper, the researchers tested multiple strains of mice for their initial seizure response over a similar eight-day period and examined any changes in seizure type or severity following a one-month period of rest. They found one strain of mouse that had the exact opposite seizure evolution. This particular strain of mouse had a low initial resistance to seizures, and that resistance remained unchanged after multiple seizures. It also showed no change in the type or severity of seizures following the one-month rest period. "This strain demonstrates that there is some genetic component that changes seizure response on day one and changed the seizure type/severity after the one-month rest," Ferland said. Ferland and colleagues believe that that genetic component might also protect this mouse's brain from modification of genes, where the previous mouse's genes do not.

To test this theory, they examined a hybrid. This strain, containing half of its genetic material from the more resistant strain and half from the less resistant strain, had a higher initial resistance to seizures that decreased. However, these mice showed no change in the type or severity of seizure that occurred after the rest period. This indicated that the hybrid strain was obtaining genes for resistance and type or severity of seizure differently from the parental strains, indicating a genetic contribution to epilepsy and epileptogenesis.

Now that they have set the model for their research, they are now using some of latest genetic tools at their disposal to locate the genes that could be protecting some of the mice from the long-lasting change in their brains following the initial seizures. "This model is great for not only looking at epilepsy, which is multiple unprovoked seizures due to a change in the brain, but also epileptogenesis, which is the change in the brain that occurs to cause epilepsy," said graduate student Papandrea. "Studying the genetics of epileptogenesis is important not only to help treat epilepsy, but possibly prevent the condition."


'/>"/>

Contact: Gabrielle DeMarco
demarg@rpi.edu
518-276-6542
Rensselaer Polytechnic Institute
Source:Eurekalert

Related medicine news :

1. Penn study finds pro-death proteins required to regulate healthy immune function
2. New study shows promise in reducing surgical risks associated with surgical bleeding
3. Study, meta-analysis examine factors associated with death from heatstroke
4. Study suggests loss of 2 types of neurons -- not just 1 -- triggers Parkinsons symptoms
5. Study says COPD testing is not measuring up
6. Preclinical study suggests organ-transplant drug may aid in lupus fight
7. Ability to cope with stress can increase good cholesterol in older white men, study finds
8. High alcohol consumption increases stroke risk, Tulane study says
9. Mailman School of Public Health study examines link between racial discrimination and substance use
10. Pitt study finds inequality in tobacco advertising
11. Stanford study highlights cost-effective method of lowering heart disease risks
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/24/2016)... ... ... of Topricin and MyPainAway Pain Relief Products, join The ‘Business for a Fair Minimum Wage’ ... 2020 and then adjusting it yearly to increase at the same rate as the median ... floor does not erode again, and make future increases more predictable. , The company is ...
(Date:6/24/2016)... ... June 24, 2016 , ... EB Medicine presented ... in Emergency Medicine conference in Ponte Vedra Beach, FL. The awards honor the ... Emergency Medicine Practice and Pediatric Emergency Medicine Practice. , “With this award, ...
(Date:6/24/2016)... ... June 24, 2016 , ... Puradigm® & Innovative Solutions today ... cultivation and processing operations at its production facility, and opened its first two ... the manufacturer of a complete system of proactive air and surface purification solutions ...
(Date:6/24/2016)... ... 24, 2016 , ... National recruitment firm Slone Partners is pleased ... and genomics experience, as Vice President of North American Capital Sales at HTG ... leading the sales team in the commercialization of the HTG EdgeSeq system and associated ...
(Date:6/24/2016)... Gaithersburg, MD (PRWEB) , ... June 24, 2016 ... ... and protocols for human induced pluripotent stem (iPS) cells and other difficult to ... PluriQ™ G9™ Cloning Medium. The PluriQ™ G9™ Gene Editing System is ...
Breaking Medicine News(10 mins):
(Date:6/23/2016)... , June 23, 2016 ... Oticon , industry leaders in advanced ... launch of Oticon Opn ™, the world,s first ... of possibilities for IoT devices.      (Photo: ... Oticon introduces a number of ,world firsts,: ...
(Date:6/23/2016)... -- Research and Markets has announced the ... (United States, China, Japan, Brazil, United Kingdom, Germany, France, ... Surgical Procedure Volumes: ... provides surgical procedure volume data in a geographic context. ... analysis of growth drivers and inhibitors, including world population ...
(Date:6/23/2016)... -- The National Pharmaceutical Council (NPC) today announced that ... organization as its newest member.  ... and chief scientific officer, Mallinckrodt Pharmaceuticals, will serve ... of Directors. ... in support of our efforts to conduct research ...
Breaking Medicine Technology: