Navigation Links
Structure of key molecule in immune system provides clues for designing drugs

PHILADELPHIA - A team from the University of Pennsylvania School of Medicine and Utrecht University has deciphered a key step in an evolutionarily old branch of the immune response. This system, called complement, comprises a network of proteins that "complement" the work of antibodies in destroying foreign invaders. It serves as a rapid defense mechanism in most species from primitive sponges to humans.

In a study published in the December 24 issue of Science, the groups of John Lambris, PhD, the Dr. Ralph and Sally Weaver Professor of Research Medicine at Penn, and Piet Gros at Utrecht, detail the atomic structure of two key transient enzyme complexes in the human complement system.

Complement proteins mark both bacterial and dying host cells for elimination by the body's cellular cleanup services and have been implicated in at least 30 diseases, including stroke, myocardial infarction, and age-related macular degeneration. The findings, Lambris says, provide a molecular scaffold for designing novel drug therapeutics.

"Now we will be able to design specific complement inhibitors to target this complex and in that way inhibit activation of the complement cascade, because now we know which parts of the proteins are essential for activity," Lambris says.

Guided By Self-Control

The complement system is a form of "innate," or generic immunity, unlike "adaptive" immune responses, in which cellular mediators such as B and T cells learn to target specific antigens through recognition by either antibodies or cell receptors. The complement process unfolds as a complex biochemical network of molecular and cellular communication events, which result in the destruction and elimination of pathogens and damaged cells and eventual recruitment of immune cells.

The two enzyme complexes Lambris studied, called C3bB and C3bBD, drive a central step in amplifying the response by complement proteins. In that step, the complement protein C3 is enzymatically cleaved to form C3b, which binds to the surface of a target cell. C3b then binds factor B to produce C3bB. This complex, in turn, binds another enzyme, factor D (producing C3bBD), which cleaves the complex to form the active C3bBb. The major target of the active C3bBb is C3 itself, resulting in rapid amplification of the complement cascade.

To capture structural snapshots of C3bB and C3bBD, the researchers first generated mutant proteins that would stabilize the complexes in their active forms. Then, Lambris and Gros used x-ray crystallography to describe the two complexes in atomic detail. They found that, upon binding to C3b, factor B changes its shape to form an "open complex," which can then be bound by factor D. Factor D, in turn, shifts its shape in a more subtle yet no less important way: The free protein is inactive because a protein loop blocks the active site of the enzyme. Upon binding to C3bB, that loop alters its position, thereby activating factor D to cleave C3bB into the C3bBb complex.

These findings, Lambris said, provide molecular explanations for several safety features of the complement system. First, they explain why factor D is inactive on its own, but active when engaged by C3bB. They also illustrate a "double safety catch" mechanism the system uses to keep itself in check, preventing complement activation in the absence of a target.

Finally, and perhaps most importantly, they provide data that can aid the design of inhibitors against factor D, which may prove useful in the treatment of complement-associated diseases.

"Besides shedding light on a highly elegant mechanism of concerted activation and intrinsic regulation, this work also offers a detailed insight into one of the most important therapeutic targets within the complement network, which may facilitate rational drug development and could lead to novel drugs for treating complement-related diseases," Lambris says.


Contact: Karen Kreeger
University of Pennsylvania School of Medicine

Related medicine news :

1. Structure deep within the brain may contribute to a rich, varied social life
2. Gestational Period Depends on Structure of Placenta: Research
3. Growth factor regenerates tooth supporting structures: Results of a large randomized clinical trial
4. Structured Diet, Exercise Plans Seem to Shed Pounds
5. Study details structure of potential target for HIV and cancer drugs
6. Feeling Introspective? Your Brain Structure May Be Key
7. Edible nanostructures
8. Menstrual cramps may alter brain structure
9. Viral protein structure study offers HIV therapy hope
10. Cancers of sweat glands, other skin-related structures may be increasing in United States
11. System that predicts protein structures could help researchers design drugs
Post Your Comments:
Related Image:
Structure of key molecule in immune system provides clues for designing drugs
(Date:11/30/2015)... (PRWEB) , ... November 30, 2015 , ... ... lecturer at a University of Delaware Accounting and Management of Information Systems course. ... solutions for mid-market businesses. Sommer will speak at before student in the Enterprise ...
(Date:11/30/2015)... Doylestown, PA (PRWEB) , ... November 30, 2015 , ... ... the 15th annual Regional Biotech Conference, organized by the Baruch S. Blumberg Institute. , ... than 100 of the area’s life science and biotechnology leaders for the conference, which ...
(Date:11/30/2015)... ... November 30, 2015 , ... ... teams looking to maximize recovery through quality sleep. Tim DiFrancesco, training coach for ... a better night’s sleep. ChiliPad precisely regulates the surface temperature of each side ...
(Date:11/30/2015)... NJ (PRWEB) , ... November 30, 2015 , ... Dr. ... With three office locations, patients can visit Dr. Margulies to experience the best available ... to hold the title of "NJ Top Dentist"! , Orthodontics is the branch of ...
(Date:11/30/2015)... ... November 30, 2015 , ... The recently published 32nd ... System (NPDS) reveals that in 2014, someone called a poison center about every ... of which were human exposure cases. , The American Association of Poison Control ...
Breaking Medicine News(10 mins):
(Date:11/30/2015)... REDWOOD CITY, Calif. , Nov. 30, 2015 ... company that is providing innovative evidence-based solutions for the treatment ... Appeals Board (PTAB) at the U.S. Patent and Trademark Office ... (IPR) of U.S. Patent No. 8,359,102 (the ,102 patent).  ... 14, 2015, a unit of Boston Scientific Corporation filed two ...
(Date:11/30/2015)... AMSTERDAM , Nov. 30, 2015   ... today announced the launch of Radiology Solutions, a ... management. Radiology Solutions comprises customized, data-driven practice management ... analytics to help radiology practices improve care delivery ... 2015 Radiological Society of North America Annual ...
(Date:11/30/2015)... AMSTERDAM , Nov. 30, 2015   Royal ... introduced ScanWise Implant, the industry,s first MRI guided user ... the scanning of patients with MR Conditional implants, such ... at the 2015 Radiological Society of North America ... streamline exams and supports diagnostic confidence of this growing ...
Breaking Medicine Technology: