Navigation Links
Stem cell therapies for heart disease -- 1 step closer
Date:10/30/2008

New research from the University of Bristol brings stem cell therapies for heart disease one step closer. The findings reveal that our bodies' ability to respond to an internal 'mayday' signal may hold the key to success for long-awaited regenerative medicine.

Dr Nicolle Krnkel and colleagues at the Bristol Heart Institute have discovered how our bodies initiate DIY rescue and repair mechanisms when blood supply is inadequate, for example in diabetic limbs or in the heart muscle during heart attack. Their findings also provide a practical step to advance progress in stem cell therapies.

In healthy people, reduced oxygen supply can occur in certain situations, e.g. after an injury. The affected tissues release chemical messengers that 'call' to a type of circulating stem cells (EPCs) for help to re-establish blood supply via the growth of new blood vessels. A group of Bristol researchers have found that kinins, for long time considered inflammatory substances, are among the messengers supporting blood vessel growth.

In this study, published in Circulation Research, Dr Krnkel and colleagues found that EPCs respond to kinins by travelling to the target tissue and invading it to assist healing. In patients with angina, EPCs cannot respond to the distress call because they lack a kinin sensor (the 'kinin receptor') on their surface. The oxygen-starved tissue is therefore left with reduced blood supply.

In heart attack patients they saw that a proportion of the circulating EPCs were able to sense the kinin signal and respond.

Dr Krnkel, Research Associate at the Bristol Heart Institute, said: "Our findings showed that heart attack patients possess the functional cells needed to repair blood supply to their heart, but they're hidden amongst a muddle of others."

The team purified the kinin-sensitive EPCs from the total stem cell population to create an enriched sample that has huge potential as a powerful regenerative therapy.

Dr Krnkel added: "In previous clinical stem cell trials, a mixture of different types of cells were used. We've used kinin like a magnet to attract and extract the most effective repair cells from the mass of different types. This enriched sample should increase the therapeutic potential, especially in heart attack patients where quick and efficient treatment is crucial for long term outcome."

Professor Jeremy Pearson, Associate Medical Director of the British Heart Foundation one of the study's funders said: "The team have made fascinating discoveries about our DIY repair systems and have translated them into practical use. They've intelligently employed the body's own strategies to develop a method that may take us a step closer to truly effective stem cell therapies for heart patients."


'/>"/>

Contact: Joanne Fryer
joanne.fryer@bristol.ac.uk
44-011-733-17276
University of Bristol
Source:Eurekalert

Related medicine news :

1. Texcel Introduces Innovative Programmable, Implantable Stimulation System for R&D of Specialty Stimulation Therapies
2. Study shows steroid therapies following transplant can be eliminated
3. Study Evaluates Laser Therapies for Hair Removal
4. New Journal to Explore Neurodegenerative, Neuroprotective and Euroregenerative Therapies!
5. New way to control protein activity could lead to cancer therapies
6. Session highlights of the 1st World Congress on Interventional Therapies for Type 2 Diabetes
7. Study Lets Teens Sound Off on Acne Therapies
8. Sales of Emerging Novel Pain Therapies Will Represent More than One-Fifth of the Total Pain Drug Market by 2023
9. UNC study: shape, not just size, impacts effectiveness of emerging nanomedicine therapies
10. 1st World Congress On Interventional Therapies for Type 2 Diabetes
11. Insight into mechanisms of diabetes-induced microvascular disease reveals new therapies
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/26/2016)... (PRWEB) , ... June 26, 2016 , ... On June ... sponsor of the 2016 Cereal Festival and World’s Longest Breakfast Table in Battle Creek, ... of the city’s history as home to some of the world’s leading providers of ...
(Date:6/25/2016)... D.C. (PRWEB) , ... June 25, 2016 , ... ... discuss health policy issues and applications at AcademyHealth’s Annual Research Meeting June 26-28, ... their work on several important health care topics including advance care planning, healthcare ...
(Date:6/25/2016)... , ... June 25, 2016 , ... As a lifelong ... Cum Laude and his M.D from the David Geffen School of Medicine at UCLA. ... to Los Angeles to complete his fellowship in hematology/oncology at the UCLA-Olive View-Cedars Sinai ...
(Date:6/24/2016)... ... June 24, 2016 , ... Those who have experienced traumatic events may suffer ... unhealthy avenues, such as drug or alcohol abuse, as a coping mechanism. To avoid ... healthy coping following a traumatic event. , Trauma sufferers tend to feel a range ...
(Date:6/24/2016)... San Francisco, CA (PRWEB) , ... June 24, ... ... at CitiDent, is now offering micro-osteoperforation for accelerated orthodontic treatment. Dr. Cheng has ... , self-ligating Damon brackets , AcceleDent, and accelerated osteogenic orthodontics. , ...
Breaking Medicine News(10 mins):
(Date:6/23/2016)... , June 23, 2016 Research ... Devices Global Market - Forecast to 2022" report to ... the treatment method for the patients with kidney failure, it ... excess fluid from the patient,s blood and thus the treatment ... potassium and chloride in balance. Increasing number ...
(Date:6/23/2016)... Roche (SIX: RO, ROG; OTCQX: RHHBY) announced ... BRAHMS PCT (procalcitonin) assay as a dedicated testing solution ... this clearance, Roche is the first IVD company in ... sepsis risk assessment and management. PCT is ... levels in blood can aid clinicians in assessing the ...
(Date:6/23/2016)... , June 23, 2016 Bracket , a ... its next generation clinical outcomes platform, Bracket eCOA (SM) ... on June 26 – 30, 2016 in Philadelphia ... electronic Clinical Outcome Assessment product of its kind to fully ... Bracket eCOA 6.0 is a flexible platform for ...
Breaking Medicine Technology: