Navigation Links
Stanford study shows different brains have similar responses to music

STANFORD, Calif. Do the brains of different people listening to the same piece of music actually respond in the same way? An imaging study by Stanford University School of Medicine scientists says the answer is yes, which may in part explain why music plays such a big role in our social existence.

The investigators used functional magnetic resonance imaging to identify a distributed network of several brain structures whose activity levels waxed and waned in a strikingly similar pattern among study participants as they listened to classical music they'd never heard before. The results will be published online April 11 in the European Journal of Neuroscience.

"We spend a lot of time listening to music often in groups, and often in conjunction with synchronized movement and dance," said Vinod Menon, PhD, a professor of psychiatry and behavioral sciences and the study's senior author. "Here, we've shown for the first time that despite our individual differences in musical experiences and preferences, classical music elicits a highly consistent pattern of activity across individuals in several brain structures including those involved in movement planning, memory and attention."

The notion that healthy subjects respond to complex sounds in the same way, Menon said, could provide novel insights into how individuals with language and speech disorders might listen to and track information differently from the rest of us.

The new study is one in a series of collaborations between Menon and co-author Daniel Levitin, PhD, a psychology professor at McGill University in Montreal, dating back to when Levitin was a visiting scholar at Stanford several years ago.

To make sure it was music, not language, that study participants' brains would be processing, Menon's group used music that had no lyrics. Also excluded was anything participants had heard before, in order to eliminate the confounding effects of having some participants who had heard the musical selection before while others were hearing it for the first time. Using obscure pieces of music also avoided tripping off memories such as where participants were the first time they heard the selection.

The researchers settled on complete classical symphonic musical pieces by 18th-century English composer William Boyce, known to musical cognoscenti as "the English Bach" because his late-baroque compositions in some respects resembled those of the famed German composer. Boyce's works fit well into the canon of Western music but are little known to modern Americans.

Next, Menon's group recruited 17 right-handed participants (nine men and eight women) between the ages of 19 and 27 with little or no musical training and no previous knowledge of Boyce's works. (Conventional maps of brain anatomy are based on studies of right-handed people. Left-handed people's brains tend to deviate from that map.)

While participants listened to Boyce's music through headphones with their heads maintained in a fixed position inside an fMRI chamber, their brains were imaged for more than nine minutes. During this imaging session, participants also heard two types of "pseudo-musical" stimuli containing one or another attribute of music but lacking in others. In one case, all of the timing information in the music was obliterated, including the rhythm, with an effect akin to a harmonized hissing sound. The other pseudo-musical input involved maintaining the same rhythmic structure as in the Boyce piece but with each tone transformed by a mathematical algorithm to another tone so that the melodic and harmonic aspects were drastically altered.

The team identified a hierarchal network stretching from low-level auditory relay stations in the midbrain to high-level cortical brain structures related to working memory and attention, and beyond that to movement-planning areas in the cortex. These regions track structural elements of a musical stimulus over time periods lasting up to several seconds, with each region processing information according to its own time scale.

Activity levels in several different places in the brain responded similarly from one individual to the next to music, but less so or not at all to pseudo-music. While these brain structures have been implicated individually in musical processing, their identifications had been obtained by probing with artificial laboratory stimuli, not real music. Nor had their coordination with one another been previously observed.

Notably, subcortical auditory structures in the midbrain and thalamus showed significantly greater synchronization in response to musical stimuli. These structures have been thought to passively relay auditory information to higher brain centers, Menon said. "But if they were just passive relay stations, their responses to both types of pseudo-music would have been just as closely synchronized between individuals as to real music." The study demonstrated, for the first time, that those structures' activity levels respond preferentially to music rather than to pseudo-music, suggesting that higher-level centers in the cortex direct these relay stations to closely heed sounds that are specifically musical in nature.

The fronto-parietal cortex, which anchors high-level cognitive functions including attention and working memory, also manifested intersubject synchronization but only in response to music and only in the right hemisphere.

Interestingly, the structures involved included the right-brain counterparts of two important structures in the brain's left hemisphere, Broca's and Geschwind's areas, known to be crucial for speech and language interpretation.

"These right-hemisphere brain areas track non-linguistic stimuli such as music in the same way that the left hemisphere tracks linguistic sequences," said Menon.

In any single individual listening to music, each cluster of music-responsive areas appeared to be tracking music on its own time scale. For example, midbrain auditory processing centers worked more or less in real time, while the right-brain analogs of the Broca's and Geschwind's areas appeared to chew on longer stretches of music. These structures may be necessary for holding musical phrases and passages in mind as part of making sense of a piece of music's long-term structure.

"A novelty of our work is that we identified brain structures that track the temporal evolution of the music over extended periods of time, similar to our everyday experience of music listening," said postdoctoral scholar Daniel Abrams, PhD, the study's first author.

The preferential activation of motor-planning centers in response to music, compared with pseudo-music, suggests that our brains respond naturally to musical stimulation by foreshadowing movements that typically accompany music listening: clapping, dancing, marching, singing or head-bobbing. The apparently similar activation patterns among normal individuals make it more likely our movements will be socially coordinated.

"Our method can be extended to a number of research domains that involve interpersonal communication. We are particularly interested in language and social communication in autism," Menon said. "Do children with autism listen to speech the same way as typically developing children? If not, how are they processing information differently? Which brain regions are out of sync?"


Contact: Bruce Goldman
Stanford University Medical Center

Related medicine news :

1. Now hear this: Stanford researchers identify forerunners of inner-ear cells that enable hearing
2. Immune cells engineered in lab to resist HIV infection, Stanford study shows
3. Optogenetics illuminates pathways of motivation through brain, Stanford study shows
4. Stanford/Yale study gives insight into subtle genomic differences among our own cells
5. Mechanism found for destruction of key allergy-inducing complexes, Stanford researchers say
6. Stanford bioengineer Karl Deisseroth wins NIH Transformative Research Award
7. MBL and Stanford scientists receive 2012 Lasker Award for Basic Medical Research
8. Little evidence of health benefits from organic foods, Stanford study finds
9. Mathematics or memory? Stanford study charts collision course in brain
10. Stanford/Intel study details power of new chip to diagnose disease, analyze protein interactions
11. Community health centers compare well with private practices, Stanford researcher finds
Post Your Comments:
(Date:11/25/2015)... ... November 25, 2015 , ... Smiles by Stevens is pleased to ... facial wrinkling. While many patients are aware of the benefits of Botox® in the ... to those suffering with discomfort, soreness, and pain as a result of Jaw Tension, ...
(Date:11/25/2015)... ... November 25, 2015 , ... “While riding the bus, ... from Bronx, N.Y. “I thought there had to be a convenient and comfortable way ... , The PROTECTOR enables disabled individuals to safely travel during cold or inclement weather. ...
(Date:11/25/2015)... ... November 25, 2015 , ... Privately ... has undertaken significant expansion of its current state of the art research, development ... PharmaTech’s strategy to increase its manufacturing capacity as well as to support its ...
(Date:11/25/2015)... San Mateo, CA (PRWEB) , ... November 25, 2015 , ... ... $15,000 in prizes were awarded to winners of the Create Real Impact awards. ... and creative expression to help stem the tide of distracted and reckless driving, the ...
(Date:11/24/2015)... , ... November 24, 2015 , ... New patients who ... a referral for dental implants at her Mississauga, ON practice. Dr. Williams ... in the placement of dental implants. , Missing teeth can lead to a ...
Breaking Medicine News(10 mins):
(Date:11/24/2015)... , Nov. 24, 2015  DILON Diagnostics and GE ... an agreement for DILON to distribute GE,s Discovery NM750b ... globe. The signing of this distribution agreement will provide Dilon,s ... Breast Imaging system and is considered an initial step ... healthcare solutions for clinicians and their patients. ...
(Date:11/24/2015)... Sectra (STO: SECT B) announces that ... agreement to deploy Breast Imaging PACS in its ... Breast Center a future-proof platform capable of expanding with the ... that Breast Center of Acadiana has entered into ... in its two freestanding imaging centers. This investment will ...
(Date:11/24/2015)... --  HeartWare International, Inc . (NASDAQ: HTWR ), ... that are revolutionizing the treatment of advanced heart failure, ... Doug Godshall is scheduled to present at the ... December 1, 2015 at 3:00 p.m. ET.  The conference ... York . .  A ...
Breaking Medicine Technology: