Navigation Links
Stanford discovery may eliminate potentially lethal side effect of stem cell therapy
Date:8/14/2011

STANFORD, Calif. - Like fine chefs, scientists are seemingly approaching a day when they will be able to make nearly any type of tissue from human embryonic stem cells. You need nerves or pancreas, bone or skin? With the right combination of growth factors, skill and patience, a laboratory tissue culture dish promises to yield therapeutic wonders. But within these batches of newly generated cells lurks a big potential problem: Any remaining embryonic stem cells - those that haven't differentiated into the desired tissue - can go on to become dangerous tumors called teratomas when transplanted into patients.

Now researchers at the Stanford University School of Medicine have developed a way to remove these pluripotent human embryonic stem cells from their progeny before the differentiated cells are used in humans. ("Pluripotent" describes cells that are able to become all types of adult tissue.)

"The ability to do regenerative medicine requires the complete removal of tumor-forming cells from any culture that began with pluripotent cells," said Irving Weissman, MD, director of the Stanford Institute for Stem Cell Biology and Regenerative Medicine. "We've used a combination of antibodies to weed out the few undifferentiated cells that could be left in the 10 or 100 million differentiated cells that make up a therapeutic dose."

Weissman pointed out that the production of therapeutic cells from pluripotent stem cells for regenerative medicine was a major goal of Proposition 71, the ballot measure that established the California Institute for Regenerative Medicine to allocate $3 billion to advance stem cell science. CIRM funded this research.

The scientists believe the technique could also be used to remove residual tumor-initiating cells from populations of cells derived from induced pluripotent stem, or iPS, cells. These cells may also be useful for therapy but, unlike embryonic stem cells, iPS cells are created in the laboratory from adult tissue.

"Commonly used differentiation protocols for embryonic stem and iPS cells often give rise to mixed cultures of cells," said research associate Micha Drukker, PhD. "Because even a single undifferentiated cell harbors the ability to become a teratoma, we sought to develop a way to remove these cells before transplantation."

Drukker is the senior author of the research, which will be published online Aug. 14 in Nature Biotechnology. Stanford medical student Chad Tang is the first author. Weissman, who is also the Virginia and D.K. Ludwig Professor for Clinical Investigation and Cancer Research and a member of the Stanford Cancer Institute, is a co-author. The research was conducted in his lab.

Teratomas are the Frankensteins of the tumor world - a hodgepodge of tissues like teeth, hair and bone. They owe their remarkable composition to the fact that the cells from which they arise early in development are pluripotent. In fact, the ability to form teratomas in animals is a defining feature of true pluripotent cells.

But the very feature that confirms a cell's pluripotency also makes it potentially dangerous to use therapeutically. That's why Tang, Drukker and Weissman decided to try to develop an antibody that would recognize and bind to only pluripotent cells and enable their removal from a mixture of cells. Although a few such antibodies already existed, they were not specific enough on their own to completely weed out the tumor-causing cells.

The researchers studied two sets of antibodies - one commercially available and one they generated themselves - to identify which among them bound most strongly to pluripotent, but not differentiated, cells. They found one newly generated antibody that was highly specific for a previously unknown marker on undifferentiated cells that they termed stage-specific embryonic antigen-5, or SSEA-5. The cells bound by this antibody, anti-SSEA-5, expressed high levels of pluripotent-specific genes and resembled embryonic stem cells in appearance. Anti-SSEA-5 also bound strongly to the inner cell mass of an early human embryo, the group of cells from which embryonic stem cell lines are derived.

When the researchers injected human embryonic stem cells recognized by anti-SSEA-5 into mice, they found that in seven out of seven times, the cells formed rapidly growing teratomas. However, cells that were not bound by anti-SSEA-5 formed smaller teratomas in only three of 11 experiments. Combining anti-SSEA-5 with two other antibodies known to bind to pluripotent cells completely separated the pluripotent from the differentiated cells, although the researchers did see some smaller, less-diverse growths in some cases.

Upon analysis, Tang and his colleagues found that anti-SSEA-5 recognizes and binds to a cell-surface carbohydrate structure called a glycan. As the pluripotent cell differentiates, this glycan is modified to other glycan structures not recognized by the antibody.

"The study of glycans is becoming an active area of stem cell biology," said Tang. "Many glycans are highly expressed in embryonic stem cells, but not in differentiated cells. This warrants further study and may lead to new understandings about embryonic stem cell biology."

In addition to Tang, Drukker and Weissman, other Stanford researchers who participated in the study include graduate student Andrew Lee; postdoctoral scholar Jens-Peter Volkmer, MD; instructor of pathology Debashis Sahoo, PhD; undergraduate student Divya Nag; research assistant Adriane Mosley; research associate Matthew Inlay; instructor of medicine Reza Ardehali, MD; postdoctoral scholar Shawn Chavez, PhD; professor of obstetrics and gynecology and director of Stanford's Human Embryonic Stem Cell Research and Education Center Renee Reijo Pera, PhD; professor of obstetrics and gynecology Barry Behr, PhD; and associate professor of cardiovascular medicine and of radiology Joseph Wu, MD, PhD.

Stanford University has filed for patent protection for the use of monoclonal antibody-based protocols to remove teratogenic pluripotent stem cells from a cell mixture.


'/>"/>

Contact: Krista Conger
kristac@stanford.edu
650-725-5371
Stanford University Medical Center
Source:Eurekalert

Related medicine news :

1. Rhoads Named Director of Cancer Outreach Programs For Stanford Cancer Center, Cancer Prevention Institute of California
2. Interleukin Genetics, Inc. and Stanford University Report Genetic Test Improves Weight Loss Success With Diets
3. Mathematical innovation turns blood draw into information gold mine in Stanford study
4. Nanoscale stealth probe slides into cell walls seamlessly, say Stanford engineers
5. Eating disorder cutoffs miss some of sickest patients, Stanford/Packard study finds
6. Plant pathogen genetically tailors attacks to each part of host, say Stanford researchers
7. Stanford-led team validates, extends fMRI research on brain activity
8. Stanford/Packard study finds surprising disparity in where chronically ill kids hospitalized
9. Orphaned elderly serious casualty of African AIDS epidemic, Stanford study finds
10. Pro Ana Versus Pro Recovery Sites: New Study by Johns Hopkins and Stanford University raises concerns.
11. Melanoma-initiating cell identified by Stanford scientists
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/25/2016)... ... 25, 2016 , ... Conventional wisdom preaches the benefits of moderation, whether it’s ... setting the bar too high can result in disappointment, perhaps even self-loathing. However, those ... goal. , Research from PsychTests.com reveals that behind the tendency to ...
(Date:6/24/2016)... ... June 24, 2016 , ... Marcy was in a crisis. Her son James, eight, was out ... family verbally and physically. , “When something upset him, he couldn’t control his emotions,” remembers ... would throw rocks at my other children and say he was going to kill them. ...
(Date:6/24/2016)... ... June 24, 2016 , ... Comfort Keepers® of San ... Society and the Road To Recovery® program to drive cancer patients to and from ... adults to ensure the highest quality of life and ongoing independence. Getting to ...
(Date:6/24/2016)... New York, NY (PRWEB) , ... June 24, ... ... lifestyle publication Haute Living, is proud to recognize Dr. Barry M. Weintraub as ... believes that “the most beautiful women in the world, and the most handsome ...
(Date:6/24/2016)... ... ... Venture Construction Group (VCG) sponsors Luke’s Wings 5th Annual ... Country Club at 1201 Rockville Pike, Rockville, Maryland, 20852. The event raised funds ... been wounded in battle and their families. Venture Construction Group is a 2016 Silver ...
Breaking Medicine News(10 mins):
(Date:6/23/2016)... June 23, 2016 Research and ... Excipients Market by Type (Organic Chemical (Sugar, Petrochemical, Glycerin), ... Topical, Coating, Parenteral) - Global Forecast to 2021" ... The global pharmaceutical excipients market is projected ... CAGR of 6.1% in the forecast period 2016 to ...
(Date:6/23/2016)... DUBLIN , June 23, 2016 ... "Global MEMS Devices Medical Market Analysis 2016 - Forecast to ... The report contains up to date financial ... reliable analysis. Assessment of major trends with potential impact on ... dive analysis of market segmentation which comprises of sub markets, ...
(Date:6/23/2016)... 2016 Bracket , a leading clinical trial ... clinical outcomes platform, Bracket eCOA (SM) 6.0, at the ... – 30, 2016 in Philadelphia , Pennsylvania.  ... Assessment product of its kind to fully integrate with RTSM, ... eCOA 6.0 is a flexible platform for electronic clinical outcomes ...
Breaking Medicine Technology: