Navigation Links
St. Jude finds 'dancing' hair cells are key to humans' acute hearing

St. Jude Children's Research Hospital investigators have found that an electrically powered amplification mechanism in the cochlea of the ear is critical to the acute hearing of humans and other mammals. The findings will enable better understanding of how hearing loss can result from malfunction of this amplification machinery due to genetic mutation or overdose of drugs such as aspirin.

Sound entering the cochlea is detected by the vibration of tiny, hair-like cilia that extend from cochlear hair cells. While the cochleas inner hair cells are only passive detectors, the so-called outer hair cells amplify the sound signal as it transforms into an electrical signal that travels to the brains auditory center. Without such amplification, hearing would be far less sensitive, since sound waves entering the cochlea are severely diminished as they pass through the inner ear fluid.

In their studies, Zuo and his colleagues have sought to establish the mechanism by which outer hair cells produce such amplification. Specifically, they wanted to distinguish between two amplification theoriescalled stereociliary motility and somatic motilitythat have resulted from previous studies of the auditory machinery.

The stereociliary theory holds that amplification is produced by intricate vibrations of the bundles of cilia extending from the outer hair cells. The somatic motility theory proposes that the sound signal is amplified by an amplifier protein, called prestin, embedded in the hair cell membrane. Prestin is powered by voltages within the membrane that are produced by mechanical sound vibrations.

This motility is also called dancing because when you electrically stimulate an outer hair cell with a sound, the cell body spontaneously elongates and contracts along with the sound, said Jian Zuo, Ph.D., associate member of the St. Jude Department of Development Neurobiology. It is very dramatic to see these hair cells dance with the sound. Zuo is the senior author of a report on this work that appears in the May 8 issue of the journal Neuron.

Since the prestin protein is the key component of somatic motility, in previous experiments Zuo and his colleagues genetically knocked out prestin in mice and tested the effects on hearing. Those mice showed a hearing defect that indicated a malfunction of somatic motility. While the knockout experiments were strong evidence for the role of somatic motility, the affected mice also showed structural abnormalities in their outer hair cells, Zuo said, thus complicating the interpretation.

In the new experiments to more unequivocally establish the role of somatic motility, the researchers genetically altered mice to have only subtle alterations in the prestin protein. These alterations only compromised prestins function as an amplifier but did not otherwise affect the outer hair cell structure or function, the researchers analysis showed.

We found that these mice showed exactly the same kinds of hearing deficiency as the previous knockout mice, Zuo said. Therefore, we believe that these experiments eliminate criticism of our earlier experiments with the knockout mice. The new experiments, Zuo said, thus firmly establish that the dancing somatic motility of the outer hair cells is critical to cochlear amplification.

However, he noted, With this study we still cannot really exclude stereociliary motility from contributing to cochlear amplification, because eliminating somatic motility also reduces ciliary motility. So, it is not possible to totally isolate either form of motility. In fact, we hypothesize that the two mechanisms might work together in different aspects of amplification.

By finding prestins role in hearing Zuo and his colleagues may help scientists better understand the mechanisms of hearing loss. For example, an overdose of aspirin causes a high-frequency hearing loss by inhibiting prestins function, Zuo said. Also, there is evidence that many cases of high-frequency hearing loss are caused by defects in the cells molecular machinery that involves prestin. And two mutations that have been detected in the prestin gene in humans are reported to be associated with deafness.


Contact: Carrie Strehlau
St. Jude Children's Research Hospital

Related medicine news :

1. Penn study finds pro-death proteins required to regulate healthy immune function
2. MRI finds breast cancer before it becomes dangerous
3. RAND finds cases of undiagnosed diabetes drop sharply
4. Children of depressed moms do better when dad is involved, SLU researcher finds
5. Ability to cope with stress can increase good cholesterol in older white men, study finds
6. Pitt study finds inequality in tobacco advertising
7. Study finds some kids are being misdiagnosed with asthma
8. Investigational Agent Targeting Metabotropic Glutamate 2/3 Receptors Demonstrates Antipsychotic Activity in Humans, Study in Nature Medicine Finds
9. Parents perceptions can hamper kids asthma care, study finds
10. Study finds primary care depression treatment often does not follow quality guidelines
11. Study of Studies Finds No Risk to Children From Phthalates in Toys
Post Your Comments:
(Date:11/24/2015)... ... , ... Aided by seed funding from the Ron Foley Foundation, researchers at ... into how to detect and treat pancreatic cancer (PC). , WCHN researchers will ... molecules (ncRNA), genetic material that is present in the blood of patients with PC. ...
(Date:11/24/2015)... , ... November 24, 2015 , ... ... for its exceptional customer service: the TrustDale certification. The award recognizes good companies ... Baltimore stone honing , tile and grout, and hard surface restoration company earned ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... patented products, announces Innovative Blending, a household invention that revolutionizes the vending machine ... & Smoothie Bars market is worth $2 billion," says Scott Cooper, CEO and ...
(Date:11/24/2015)... ... November 24, 2015 , ... GBCHealth and Global Health ... bestowed annually to the world’s best corporate-supported global health programs. The awards ... Landscape Symposium held in Washington D.C and attended by over 150 representatives from ...
(Date:11/24/2015)... Miami, Fl (PRWEB) , ... November 24, 2015 , ... ... Farms. Adding houseplants is an easy and affordable way to bring long-lasting style and ... “green heroes” also provide oxygen, clean the air and keep on giving all year ...
Breaking Medicine News(10 mins):
(Date:11/24/2015)... 24, 2015 iRhythm Technologies, Inc. , a leading ... announced that it will participate in the 27th Annual Piper Jaffray ... New York, NY . Kevin King , Chief ... 1, 2015 at 8:50am ET. --> ... . --> . --> iRhythm is ...
(Date:11/24/2015)... Teledyne DALSA , a Teledyne Technologies company ... introduce its CMOS X-Ray detector for mammography at ... December 3, at McCormick Place in Chicago ... interventional imaging will be on display in the South Hall, ... CMOS X-Ray detectors is the industry benchmark for high speed ...
(Date:11/24/2015)... uptake of recently approved and pipeline premium products for Type 1 Diabetes ... says GBI Research . --> The ... Mellitus (T1DM), will be a key driver of market growth to 2021, ... The uptake of recently approved and pipeline premium products for Type 1 ... 2021, says GBI Research . Type ...
Breaking Medicine Technology: