Navigation Links
Sound training rewires dyslexic children's brains for reading

Some children with dyslexia struggle to read because their brains aren't properly wired to process fast-changing sounds, according to a brain-imaging study published this month in the journal Restorative Neurology and Neuroscience (online October 16). The study found that sound training via computer exercises can literally rewire children's brains, correcting the sound processing problem and improving reading. According to the study's first author, Nadine Gaab, PhD, of the Laboratory of Cognitive Neuroscience at Children's Hospital Boston, the finding may someday help clinicians diagnose dyslexia even before reading begins, and suggests new ways of treating dyslexia, such as musical training.

Children with developmental dyslexia confuse letters and syllables when they read. The idea that they may have an underlying problem processing sound was introduced by Paula Tallal, PhD, of Rutgers University in the 1970s, but it has never been tested using brain imaging. Gaab used functional MRI imaging (fMRI) to examine how the brains of 9- to 12-year old children with developmental dyslexia, and normal readers, responded to sounds, both before and after using educational software called Fast ForWord Language, designed in part by Tallal, a co-author on the study.

Gaab first tested how the children's brains responded to two types of sounds: fast-changing and slow-changing. These sounds were not language, but resembled vocal patterns found in speech. As Gaab watched using brain fMRI, the children listened to the sounds through headphones. The fast-changing sounds changed in pitch or other acoustic qualities quicklyover tens of millisecondsas in normal speech. By contrast, slow-changing sounds changed over only hundreds of milliseconds.

In typical readers, 11 brain areas became more active when the children listened to fast-changing, compared to slow-changing, sounds. Gaab set this as "normal." In dyslexic children, the fast-changing sounds didn't trigger this ramped-up brain activity. Instead, dyslexic children processed the fast-changing sounds as if they were slow-changingusing the same brain areas, at the same lower intensity. "This is obviously wrong," says Gaab.

Infants must correctly process fast-changing sounds, like those within the syllable "ba," in order to learn language and, later, to know what printed letters sound like. Infants use sound processing to grab from speech all the sounds of their native language, then stamp them into their brains, creating a sound map. If they can't analyze fast-changing sounds, their sound map may become confused.

"Children with developmental dyslexia may be living in a world with in-between sounds," says Gaab. "It could be that whenever I tell a dyslexic child 'ga,' they hear a mix of 'ga,' 'ka,' 'ba,' and 'wa'."

Reading trouble may develop when these children first see printed letters, Gaab and cognitive scientists believe, because at this stage, the children's brains wire their internal sound map to letters they see on the page. Linking normal letters to confused sounds may lead to syllable-confused reading.

But the brains of the children with dyslexia changed after completing exercises in a computer program known as Fast ForWord Language (Scientific Learning, Oakland, CA). The exercises involved no readingonly listening to sounds, starting with simple, changing noises, like chirps that swooped up in pitch. The children then had to respondclicking to indicate, for instance, whether the chirps pitch went up or down. The sounds played slowly at firstan easy task for the dyslexic childrenbut gradually sped up, becoming more challenging. The exercises then repeated with increasingly complex sounds: syllables, words, and finally, sentences.

The repetitive exercises appeared to rewire the dyslexic children's brains: after eight weeks of daily sessionsabout 60 hours totaltheir brains responded more like typical readers' when processing fast-changing sounds, and their reading improved. It's unclear, though, whether the improvement lasts beyond a few weeks, since follow-up tests were not done.

Brain imaging study in preschoolers

Gaab has begun recruiting for a new study of preschoolers whose family members have dyslexia. By looking for sound-processing problems on brain fMRI, she hopes to catch dyslexia at an early stage, before the children begin learning to readand then remediate it through sound training, sparing them from years of frustration and low self-esteem later in life.

She will also investigate what other types of sound training might help dyslexic children. Learning to sing or play an instrument, for example, involves gradual, repetitive, and intense listening and responding to fast-changing sounds.

"We've done a few studies showing that musicians are much better at processing rapidly changing sounds than people without musical training," says Gaab. "If musicians are so much better at these abilities, and you need these abilities to read, why not try musical training with dyslexic children and see if that improves their reading""


Contact: James Newton
Children's Hospital Boston  

Related medicine news :

1. Ultrasound helps stroke treatment
2. Ultrasound test may detect heart condition early
3. Adding contrast improves ultrasounds ability to detect prostate cancer
4. Ultrasound Screening Could Improve The Outcome Of Critically ill Patients
5. The Safety Of Prenatal Ultrasounds Questioned
6. Stanford Medical Center Implements The First Virtual Cardiac Ultrasound
7. Education in women brings sounder sleep
8. Cure For Deafness Leads Scientist To Find How Fishes Can Hear And Hum Sounds At Same Time
9. Ultrasounds To Detect Changes In Heart Motions
10. Ultrasound may mean end to classic stethoscope
11. Have You Ever Wondered How We Perceive Different Sounds?
Post Your Comments:
Related Image:
Sound training rewires dyslexic children's brains for reading
(Date:11/27/2015)... ... November 27, 2015 , ... ... progress through sharing, the 2016 Building Better Radiology Marketing Programs meeting ... begin on Sunday, March 6, 2016, at Caesars Palace in Las Vegas with ...
(Date:11/27/2015)... ... November 27, 2015 , ... A simply groundbreaking television series, ... interesting show that delves into an array of issues that are presently affecting Americans. ... from open dialogue, this show is changing the subjects consumers focus on, one episode ...
(Date:11/27/2015)... , ... November 27, 2015 , ... ... an innovative online platform for mental health and wellness consultation, has collaborated with ... partnership will bridge the knowledge gap experienced by parents and bring advice from ...
(Date:11/27/2015)... IL (PRWEB) , ... November 27, 2015 , ... ... of the largest, most successful and prominent nonprofit healthcare organizations in the country. ... governance involvement with various organizations, and helped advance the healthcare industry as a ...
(Date:11/27/2015)... Francisco, California (PRWEB) , ... November 27, 2015 , ... ... Janis Joplin Ann Arbor Michigan boxing style concert posters. This is one of Joplin's ... at the Canterbury House at the University of Michigan in Ann Arbor. The According ...
Breaking Medicine News(10 mins):
(Date:11/27/2015)... DUBLIN , Nov. 27, 2015 Research ... of the "Global Intrauterine Devices Market 2015-2019" ... --> In this report, the author ... intrauterine devices market for 2015-2019. To calculate the market ... of following type of products: Hormonal IUDs and copper ...
(Date:11/26/2015)... november 2015 AAIPharma Services Corp./Cambridge ... investering aan van ten minste $15,8 miljoen ... het mondiale hoofdkantoor in Wilmington, ... in extra kantoorruimte en extra capaciteit voor ... behoeften van de farmaceutische en biotechnologische markten. ...
(Date:11/26/2015)... Research and Markets ( ) has announced ... Outlook to 2019 - Rise in Cardiac Disorders and Growing ... to their offering. Boston ... scientific and others. --> The market ... Boston scientific and others. ...
Breaking Medicine Technology: