Navigation Links
Scripps research scientists engineer new type of vaccination that provides instant immunity

The experiments, thus far performed only in mice, appear to overcome a major drawback of vaccinations the lag time of days, or even weeks, that it normally takes for immunity to build against a pathogen. This new method of vaccination could potentially be used to provide instantaneous protection against diseases caused by viruses and bacteria, cancers, and even virulent toxins.

The work is being published in the Early Edition of the Proceedings of the National Academy of Sciences (PNAS) the week of March 2, 2009.

The team, led by Scripps Professor Carlos Barbas, III, Ph.D., tested the vaccination method called covalent immunization on mice with either melanoma or colon cancer.

The scientists injected these mice with chemicals specifically designed to trigger a programmable and "universal" immune reaction. They developed other chemicals, "adapter" molecules," that recognized the specific cancer cells. Once injected into the animal, the adapter molecules self-assembled with the antibodies to create covalent antibody-adapter complexes.

"The antibodies in our vaccine are designed to circulate inertly until they receive instructions from tailor-made small molecules to become active against a specific target," Barbas says. "The advantage of this method is that it opens up the possibility of having antibodies primed and ready to go in the time it takes to receive an injection or swallow a pill. This would apply whether the target is a cancer cell, flu virus, or a toxin like anthrax that soldiers or even civilian populations might have to face during a bioterrorism attack."

Only those mice that received both the vaccine and the adapter compound generated an immediate immune attack on the cancer cells that led to significant inhibition of tumor growth. This is the first time that such a covalent vaccine has been successfully designed and tested typically, antibodies do not bind to chemicals in this covalent fashion.

The current breakthrough builds on work the Barbas laboratory has been engaged in for the past few years on chemically programmed monoclonal antibodies, a new class of therapeutics that the group invented. In this type of therapy, small, cell-targeting molecules and non-targeting catalytic monoclonal antibodies self-assemble to target pathogens. Monoclonal antibodies are produced in the laboratory from a single cloned B-cell the immune system cell that makes antibodies to bind to a specific substance. Three clinical trials are now under way by Pfizer to test the therapeutic effectiveness of this new type of therapy in cancer and diabetes. The antibodies in the antibody-adapter complex are monoclonal antibodies engineered to link themselves to adapter molecules.

The Search for the Ideal Vaccination

The practice of vaccination has been extraordinarily successful in controlling certain diseases, but there are drawbacks. Vaccine development can be an educated guessing game in the case of the flu, for example, scientists must study worldwide outbreak patterns to anticipate which type of flu might strike a particular area. In addition, the most common vaccination strategies use whole proteins, viruses, or other complex immunogens not just the specific part of the macromolecule that is recognized by the immune system to elicit an immune response, which makes for wasted immune activity. Then there is the body's own kinetics the time it takes to mount a disease-relevant immune response to immunogens limits the speed with which immunity can be achieved. Finally, age-related declines in the ability to mount strong immune responses to biological-based vaccines present another challenge to the effectiveness of such vaccines.

Barbas's chemical-based rather than biological based approach to vaccine development addresses many of these challenges.

"Our approach differs from the traditional vaccine approach in the sense that when we design an antibody-adapter compound we know exactly what that compound will react with," Barbas says. "The importance of this is best exemplified with HIV. In current vaccines, many antibodies are generated against HIV, but most are not able to target the active part of the virus."

In the near term, Barbas will apply his covalent vaccination approach to HIV, cancer, and infectious diseases for which no vaccines currently exist. A particular focus will be creating adapter molecules specific to these diseases.

"We believe that chemistry-based vaccine approaches have been underexplored and may provide opportunities to make inroads into intractable areas of vaccinology," Barbas says.

In addition to Barbas, co-authors of the paper, "Instant immunity through chemically programmable vaccination and covalent self-assembly," are Mikhail Popkov (who is first author), Beatriz Gonzalez, and Subhash C. Sinha, all of The Scripps Research Institute.


Contact: Mika Ono
Scripps Research Institute

Related medicine news :

1. Scripps Research scientists shed new light on how antibodies fight HIV
2. Scripps Health Treats More Than 160 Fire Victims at Emergency Departments Across San Diego County
3. Scripps research scientists discover chemical triggers for aggression in mice
4. Scripps research scientists find new genetic mutation that halts the development of lupus
5. Scripps scientists find calcium channel blockers help normalize lysosomal storage disease cells
6. Scripps scientists peg wind as the force behind fish booms and busts
7. Scripps research scientists devise approach that stops HIV at earliest stage of infection
8. Scripps Florida awarded $7.6 million grant to develop novel treatment for Parkinsons disease
9. Scripps research team wins $4M grant to study effects of chronic marijuana use
10. Scripps Florida scientists develop a process to disrupt hepatitis C virion production
11. Scripps Memorial Hospital Nurses Throw Out CNA
Post Your Comments:
(Date:6/27/2016)... ... 27, 2016 , ... The OSHA Training Center at ... Center headquartered in Northern California, has issued an important reminder to employers to ... Employers with workers exposed to high temperatures should establish a complete heat ...
(Date:6/27/2016)... ... June 27, 2016 , ... "FCPX editors can now reveal their media with ... X," said Christina Austin - CEO of Pixel Film Studios. , ProSlice Color ... users can now reveal the media of their split screens with growing colorful ...
(Date:6/27/2016)... ... June 27, 2016 , ... ... announced today its affiliation with Tennessee Counseling Association. This new relationship ... of the Tennessee Counseling Association, adding exclusive benefits and promotional offers. , "TCA ...
(Date:6/27/2016)... ... June 27, 2016 , ... ... announced its strategic partnership with Connance, a healthcare industry leader providing predictive ... proven, proprietary technology combine to provide health systems, hospitals and ambulatory surgical ...
(Date:6/27/2016)... ... 2016 , ... A revolution is underway. Brooklyn-based company, ... for the millions of people who require these medical transport services annually. ... the use of technology. Now, SmartEMS has put forth an industry-changing app that ...
Breaking Medicine News(10 mins):
(Date:6/26/2016)... June 26, 2016 One of Australia,s ... the formation of a new biotechnology company, Noxopharm Limited [ABN 50 ... an IPO and to list on the ASX. Noxopharm ... ready to enter a Phase 1 clinical study later this year. ... address one of the biggest problems facing cancer patients - the ...
(Date:6/26/2016)... 2016 Jazz Pharmaceuticals plc (Nasdaq: ... Hart-Scott-Rodino Antitrust Improvements Act of 1976, as amended ("HSR"), ... Inc. ("Celator"; Nasdaq: CPXX ) expired effective ... As previously announced on May 31, 2016, ... agreement under which Jazz Pharmaceuticals has commenced a tender ...
(Date:6/26/2016)...  VMS Rehab Systems, Inc. ( ) reported ... required to build a strong and stable market for ... on the OTC Markets-pink current trading platform. ... are seeing an anomaly in market trading activities that ... the Company, but shareholders and market players as well. ...
Breaking Medicine Technology: