Navigation Links
Scripps Research scientists find cancer cells co-opt fat metabolism pathway to become more malignant
Date:1/12/2010

LA JOLLA, CAJanuary 5, 2010An enzyme that normally helps break down stored fats goes into overdrive in some cancer cells, making them more malignant, according to new findings by a team at The Scripps Research Institute.

"Historically, research has focused on the mechanisms leading to cancer formation and therapies have focused on taking out cancer cells," says Benjamin Cravatt, chair of the Scripps Research Department of Chemical Physiology and corresponding author of the study published in the January 8, 2009 issue of the journal Cell. "But here we were looking for pathways that lead to cancer aggressiveness."

The aggressiveness-promoting enzyme, called monoacylglycerol lipase (or MAGL for short), may provide a new target for treating more malignant forms cancers or for preventing cancer progression. The findings also suggest an explanation for the reported link between obesity and cancer by showing that releasing stored fats in cancer cells can push them toward more aggressive behaviors.

Homing in on a Cancer Protein

As a cancer grows inside the body, some cells take on more aggressive characteristics, such as the ability to invade local areas and to spread to other parts of the body. To identify possible drivers in this process, Daniel Nomura, a postdoc in Cravatt's lab, compared changes in the functional state of enzymes in non-aggressive cancer cells to that of aggressive ones.

"We were looking for changes in enzyme activity," explains Nomura. In particular, the researchers were focusing on a group of enzymes, called serine hydrolases, that break down proteins, fats, and other molecules in cells. "This is one of the largest known enzyme families, comprising about one percent of all proteins in a cell," says Nomura. "And these enzymes have been implicated in cancer and other diseases."

Nomura employed a technique pioneered in Cravatt's lab called activity-based protein profiling, which allows researchers to survey all active enzymes in a cell at once. By using a fluorescent label that only "tags" enzymes with certain chemical properties, they were able to selectively sort through all the enzymes belonging to the serine hydrolases family, looking for ones that are abnormal in aggressive cancers.

Among the many enzymes detected, MAGLa type of enzyme, called a lipase, that breaks down stored fats, or lipidsstood out as being highly elevated in aggressive cancers. Through a series of experiments where Nomura either inhibited or stimulated MAGL's activity, they were able to establish that this enzyme is capable of converting cancer cells from less to more malignant forms.

"It is not only necessary but sufficient for the aggressive phenotype," says Cravatt, who is also a member of the Skaggs Institute for Chemical Biology at Scripps Research.

Identifying a New Metabolic Pathway

Having identified a key player responsible for the aggressive behavior of cancer cells, Cravatt and Nomura wanted to better understand MAGL's role.

They discovered that when the MAGL becomes more active in cancer cells it breaks down stored fats to produce large amounts of free fatty acidsthe building blocks of cell membranes and of fatty molecules that serve as signals to and from cells. These free fatty acids then go on to produce other smaller molecules known to promote cancer growth and progression.

MAGL was known to break down stored fats, but had never been shown to regulate free fatty acid production. "So this told us that it is an acquired activity of aggressive cancer cells," says Nomura. "As cancer cells become more aggressive, the lipase is increased and its activity is targeted to the release of free fatty acid." In other words, cancer cells co-opted MAGL's activity to support their progression.

Explaining the Link to Obesity

The finding that MAGL regulates the production of free fatty acids in aggressive cancer cells provides a possible explanation for the reported link between obesity and cancer.

People who eat foods high in fats are constantly introducing free fatty acids in their bodies. "We have shown that cancer cells have their own pathways to produce free fatty acids, which will enable them to become more aggressive," says Cravatt. "Less malignant cancer cells do not appear to have yet adopted an autonomous pathway to increase their own pools of free fatty acids. Thus, taking free fatty acids from the diet could assist these cells in developing a more malignant phenotype."

Many more experiments are needed to evaluate whether blocking MAGL's activity might serve to curb cancer's progression in people, which could offer a new type of cancer therapy. Because the enzyme is not needed for cell survivalrather for progression to more aggressive behaviorsit may offer some advantages over existing therapies.

"It might have a better safety profile because it does not target a general survival mechanism common to all cells," explains Cravatt.

In addition to Cravatt and Nomura, co-authors of the study "Monoacylglycerol Lipase Regulates a Fatty Acid Network that Promotes Cancer Pathogenesis" also include Jonathan Long, Sherry Niessen, and Heather Hoover from Scripps Research and Shu-Wing Ng from Harvard Medical School.


'/>"/>

Contact: Keith McKeown
kmckeown@scripps.edu
858-784-8134
Scripps Research Institute
Source:Eurekalert

Related medicine news :

1. Scripps Research scientists shed new light on how antibodies fight HIV
2. Scripps Health Treats More Than 160 Fire Victims at Emergency Departments Across San Diego County
3. Scripps research scientists discover chemical triggers for aggression in mice
4. Scripps research scientists find new genetic mutation that halts the development of lupus
5. Scripps scientists find calcium channel blockers help normalize lysosomal storage disease cells
6. Scripps scientists peg wind as the force behind fish booms and busts
7. Scripps research scientists devise approach that stops HIV at earliest stage of infection
8. Scripps Florida awarded $7.6 million grant to develop novel treatment for Parkinsons disease
9. Scripps research team wins $4M grant to study effects of chronic marijuana use
10. Scripps Florida scientists develop a process to disrupt hepatitis C virion production
11. Scripps Memorial Hospital Nurses Throw Out CNA
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/25/2016)... , ... June 25, 2016 , ... On Friday, June ... a Bronze Wellness at Work award to iHire in recognition of their exemplary accomplishments ... of the 7th annual Maryland Workplace Health & Wellness Symposium at the BWI Marriott ...
(Date:6/24/2016)... ... 24, 2016 , ... June 19, 2016 is World Sickle Cell Observance Day. ... the benefits of holistic treatments, Serenity Recovery Center of Marne, Michigan, has ... , Sickle Cell Disease (SCD) is a disorder of the red blood cells, which ...
(Date:6/24/2016)... ... June 24, 2016 , ... ... for accelerated orthodontic treatment. Dr. Cheng has extensive experience with all areas of ... AcceleDent, and accelerated osteogenic orthodontics. , Micro-osteoperforation is a revolutionary adjunct to ...
(Date:6/24/2016)... , ... June 24, 2016 , ... ... at the Clinical Decision Making in Emergency Medicine conference in Ponte Vedra Beach, ... journal articles published in Emergency Medicine Practice and Pediatric Emergency Medicine ...
(Date:6/24/2016)... ... ... National recruitment firm Slone Partners is pleased to announce the ... as Vice President of North American Capital Sales at HTG Molecular . ... team in the commercialization of the HTG EdgeSeq system and associated reagents in North ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... , Belgium , June 24, ... VNRX), today announced the appointment of Dr. ... Directors as a Non-Executive Director, effective June 23, ... Audit, Compensation and Nominations and Governance Committees.  As ... Futcher will provide independent expertise and strategic counsel ...
(Date:6/23/2016)... 23, 2016 Any dentist who has made an ... current process. Many of them do not even offer this ... and high laboratory costs involved. And those who ARE able ... such a high cost that the majority of today,s patients ... Parsa Zadeh , founder of Dental Evolutions Inc. and ...
(Date:6/23/2016)... , June 23, 2016 Research and ... Devices Medical Market Analysis 2016 - Forecast to 2022" ... The report contains up to date financial data derived ... Assessment of major trends with potential impact on the market ... of market segmentation which comprises of sub markets, regional and ...
Breaking Medicine Technology: