Navigation Links
Scientists tailor cell surface targeting system to hit organelle ZIP codes
Date:4/17/2012

HOUSTON - Scientists who developed a technology for identifying and targeting unique protein receptor ZIP Codes on the cellular surface have found a way to penetrate the outer membrane and deliver engineered particles - called iPhage - to organelles inside the cell.

In a paper published today online in Nature Communications, the team led by researchers at The University of Texas MD Anderson Cancer Center reports packaging the phage particles with a peptide called penetratin to reach inside the cell.

This new capacity was used to screen for peptide ligands - binding agents - that connect to receptors on mitochondria, which generate a cell's energy, and ribosomes, which process mRNA to make proteins.

The team found a peptide that binds to a specific ribosomal protein called RPL29 which, when delivered with penetratin, disrupts ribosomal function and kills cells. Cell survival was reduced in both malignant and non-malignant cells and in both mouse and human cell lines.

"We provided proof-of-concept for a direct intracellular ligand-receptor screening technology, which is clearly an unmet need in cancer biology, along with the discovery of an organelle ZIP Code that mediates cell death," said Renata Pasqualini, Ph.D., co-senior author of the paper and a professor in MD Anderson's David H. Koch Center for Applied Research of Genitourinary Cancers.

The RPL29 pathway is a new cell death pathway. The researchers found evidence of three types of cell death caused by disrupting the pathway with the new ligand.

"The molecular tool reported here along with its future ramifications will hopefully be of interest to targeted drug development, gene delivery, and mechanisms of human organelle diseases," said Wadih Arap, M.D., Ph.D., also of the Koch Center.

The iPhage screens for ligands inside the cell

Arap and Pasqualini pioneered a screening technique that exploits the existence of unique ZIP Codes in the vascular system to identify molecular targets and the ligands that can be used to selectively hit them.

They developed engineered viral particles, called phage, and packaged them with massive peptide libraries. When injected, these phage/peptide combinations bind to specific receptors in the blood vessels and organs. Cells are then fractionated and analyzed to discover which ligands bind to specific surface proteins.

Arap, Pasqualini and their colleagues have a number of targeted drugs in various stages of development based on screening and then delivery with the combinatorial particles.

The team wondered whether packaging the particles with penetratin, which is known to cross membranes without requiring a cellular receptor, would allow their technology to work inside of cells. "Penetratin makes a little bubble on the cell surface and the bubble goes in through the membrane," Arap said.

They dubbed the combination of penetratin and phage particles "internalizing phage," or iPhage. In a series of experiments, the team found:

  • iPhage successfully entered normal and malignant cells in both mouse and human cell lines while the engineered phage alone, or phage packaged with mutated penetratin, did not gain entry.
  • Connecting iPhage with the mitochondria localization signal (MLS) peptide resulted in a 10-fold concentration of MLS-iPhage in mitochondria compared to simple iPhage, showing that specific organelles could be targeted.
  • To screen for new ligands that might target specific organelles, they attached a random peptide library to iPhage particles and treated the KS1767 cells. Subsequent analysis found the peptide that binds to RPL29.
  • Packaged with penetratin, this "internalizing homing peptide" with the ungainly name YKWYYRGAA killed 75 percent of cells in culture while the peptide alone or penetratin alone killed virtually none.
  • Signs of apoptotic, autophagic and necrotic cell death were found with electron microscopy in cells killed by the YKWYYRGAA-penetratin combination.

Future studies will be needed to understand the complex cell death mechanism caused by the combination.


'/>"/>

Contact: Scott Merville
smerville@mdanderson.org
713-792-0661
University of Texas M. D. Anderson Cancer Center
Source:Eurekalert

Related medicine news :

1. Scientists identify major source of cells defense against oxidative stress
2. Scientists uncover multiple faces of deadly breast cancer
3. Scientists solving the mystery of human consciousness
4. A*STAR scientists discover special class of natural fats stimulates immune cells to fight diseases
5. Hutchinson Center and TGen scientists discover potential break through in pancreatic cancer
6. Scientists study link between amyloid beta peptide levels and Alzheimers disease
7. Scientists measure how energy is spent in martial arts
8. Scientists link 2 cancer-promoting pathways in esophageal cancer
9. Hutchinson Center scientists break through pancreas cancer treatment barrier
10. Sanford-Burnham scientists unravel cancer drugs secret to resistance
11. Scientists develop a software tool for estimating heart disease risk
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/19/2017)... ... May 19, 2017 , ... In a continuous effort to ... a luxury online mattress company that specializes in natural and organic latex mattresses, has ... autism organization) for every unique share their recent viral Facebook video receives, ...
(Date:5/19/2017)... , ... May 19, 2017 , ... When Kyle Busch ... his name will already appear on two major research studies that could impact the ... with Dr. Matt Daggett, KCU alumnus and an orthopedic surgeon, alongside an international team ...
(Date:5/19/2017)... ... May 19, 2017 , ... The Miller Agency, a Jacksonville ... and business owners in the region, is embarking on a cooperative charity event ... families. , Multiple sclerosis (MS) is a demyelinating disease that affects the insulation ...
(Date:5/19/2017)... ... ... As a groundbreaking surgeon on the frontline of prostate cancer treatment, Dr. ... the disease, he says, can make a world of difference. , ... Georgia Comprehensive Cancer Control’s (GC3) Prostate Cancer Task Force and its suggestion to recommend ...
(Date:5/19/2017)... ... May 18, 2017 , ... Eisenhower Fellowships ... eight American presidents of both political parties, will become the 9th Chairman of ... L. Powell, USA (Retired) as Chairman in May, 2018. , Secretary Gates served ...
Breaking Medicine News(10 mins):
(Date:5/8/2017)... FLINT, Mich. , May 8, 2017  Diplomat ... WRB Communications, Inc. ("WRB"), a health care ... . WRB specializes in relationship management ... organizations. WRB will ... of Diplomat,s commercialization support services for manufacturers, biotech firms, ...
(Date:5/4/2017)...  Fortuna Fix Inc. (" Fortuna "), a private, ... eliminate the need for embryonic and fetal stem cells by ... Fortuna announced today the launch of ... , MD, PhD; Father Kevin FitzGerald , S.J., PhD; ... James Giordano , PhD. "We are excited ...
(Date:5/4/2017)... -- DarioHealth Corp. (NASDAQ: DRIO), a leading global digital health ... announced that it is teaming up with Auto Control ... lower diabetes healthcare costs in Canada ... available throughout all provinces and territories in ... additional savings when shopping for Dario supplies in local ...
Breaking Medicine Technology: