Navigation Links
Scientists identify lab-made proteins that neutralize multiple strains of seasonal and pandemic flu
Date:2/22/2009

Scientists have identified a small family of lab-made proteins that neutralize a broad range of influenza A viruses, including the H5N1 avian virus, the 1918 pandemic influenza virus and seasonal H1N1 flu viruses. These human monoclonal antibodies, identical infection-fighting proteins derived from the same cell lineage, also were found to protect mice from illness caused by H5N1 and other influenza A viruses. Because large quantities of monoclonal antibodies can be made relatively quickly, after more testing, these influenza-specific monoclonal antibodies potentially could be used in combination with antiviral drugs to prevent or treat the flu during an influenza outbreak or pandemic.

A report describing the research, supported by the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health as well as the Centers for Disease Control and Prevention, appears online today in Nature Structural & Molecular Biology. Wayne Marasco, M.D., Ph.D., associate professor of medicine at the Dana-Farber Cancer Institute and Harvard Medical School in Boston led the research team, which included collaborators from the Burnham Institute for Medical Research in La Jolla, Calif., and the CDC in Atlanta.

"This is an elegant research finding that holds considerable promise for further development into a medical tool to treat and prevent seasonal as well as pandemic influenza," notes NIAID Director Anthony S. Fauci, M.D. "In the event of an influenza pandemic, human monoclonal antibodies could be an important adjunct to antiviral drugs to contain the outbreak until a vaccine becomes available."

Using standard methods of production, initial doses of a new influenza vaccine to fight pandemic influenza would be expected to take four to six months to produce.

Key to their research, Dr. Marasco and his colleagues discovered and described the atomic structure of an obscure but genetically stable region of the influenza virus to which their monoclonal antibodies bind. The hidden part of the influenza virus is in the neck below the peanut-shaped head of the hemagglutinin (HA) protein. HA and neuraminidase are the two main surface proteins on the influenza virus.

The scientists also identified a new mechanism of antibody action against influenza: Once the antibody binds, the virus cannot change its shape, a step required before it can fuse with and enter the cell it is attempting to infect.

Dr. Marasco, Jianhua Sui, M.D., Ph.D., and other Dana-Farber colleagues began their study with avian flu viruses. They scanned tens of billions of monoclonal antibodies produced in bacterial viruses, or bacteriophages, and found 10 antibodies active against the four major strains of H5N1 avian influenza viruses. Encouraged by these findings, they collaborated with Ruben O. Donis, Ph.D., of the CDC Influenza Division, and found that three of these monoclonal antibodies had broader neutralization capabilities when tested in cell cultures and in mice against representative strains of other known influenza A viruses.

Influenza A viruses can include any one of the 16 known subtypes of HA proteins, which fall into two groups, Group 1 and Group 2. Their monoclonal antibodies neutralized all testable viruses containing the 10 Group 1 HAs--which include the seasonal H1 viruses, the H1 virus that caused the 1918 pandemic and the highly pathogenic avian H5 subtypes--but none of the viruses containing the six Group 2 HAs.

Simultaneously, Dr. Marasco's group teamed up with Robert C. Liddington, Ph.D., professor and chair of the Infectious and Inflammatory Disease Center at Burnham, to determine the atomic structure of one of their monoclonal antibodies bound to the H5N1 HA. Their detailed picture shows one arm of the antibody inserted into a genetically stable pocket in the neck of the HA protein, an interaction that blocks the shape change required for membrane fusion and virus entry into the cell.

When they surveyed more than 6,000 available HA genetic sequences of the 16 HA subtypes, they found the pockets to be very similar within each Group but to be significantly different between the two Groups. The genetically stable pockets, they note, may be a result of evolutionary constraints that enable virus-cell fusion. This could also explain why they did not detect so-called escape mutants, viruses that elude the monoclonal antibodies through genetic mutation.

"One of the most remarkable findings of our work is that we identified a highly conserved region in the neck of the influenza hemagglutinin protein to which humans rarely make antibodies," says Dr. Marasco. "We believe this is because the head of the hemagglutinin protein acts as a decoy by constantly undergoing mutation and thereby attracting the immune system to produce antibodies against it rather than against the pocket in the neck of the protein."

Their findings could also assist vaccine developers. Current influenza vaccines target the constantly mutating head of the HA protein and do not readily generate antibodies against the conserved region in the neck.

"An important goal is to redirect the immune response of vaccines to this invariable region of the hemagglutinin to try to obtain durable lifelong immunity," Dr. Marasco states.

The monoclonal antibodies identified in their paper are very well-characterized, Dr. Marasco notes, and he is optimistic about their further clinical development. "These are fully human monoclonal antibodies that are ready for advanced preclinical testing," he says. He currently is arranging to use NIAID research resources to take the next steps: first, testing the antibodies in ferrets, the gold standard animal model for influenza, and then developing a clinical grade version of one antibody that could enter human clinical trials as soon as 18 months from when the development program begins. Should the antibodies prove safe and effective in humans, it could take several years to develop a licensed product.

Despite the availability of influenza drugs and vaccines, seasonal influenza still kills more than 250,000 people worldwide each year. During seasonal flu outbreaks, monoclonal antibodies could be used to treat individuals with impaired immunity due to pre-existing medical conditions or advanced age. In the event of an influenza pandemic, these individuals plus others at risk--for example, first responders and medical personnel and exposed family members and coworkers--could also benefit from this type of therapy.


'/>"/>

Contact: Laurie K. Doepel
doepel@nih.gov
301-402-1663
NIH/National Institute of Allergy and Infectious Diseases
Source:Eurekalert

Related medicine news :

1. Scientists May Have New Way to Fight the Flu
2. Scientists Gain Insight Into Blood Cancers Progression
3. Dallas Scientists Discover Statins May Falsely Indicate Thyroid Problems
4. Two Scientists Honored with MetLife Foundation Awards for Medical Research in Alzheimers Disease
5. University of Ottawa Heart Institute Scientists Unlock Mechanism That Turns on Weight-Loss Gene
6. Scientists uncover secrets of potential bioterror virus
7. Scientists uncover indicator that warns leukemia is progressing to more dangerous form
8. In Month of the Heart, Scientists Identify Better Way to Predict Heart-Disease Risk
9. Scientists Heartened at Prospect of End to Stem Cell Ban
10. Scientists discover key factor in controlling the breakdown of bone
11. Team led by Scripps Scientists increases understanding of two types of blindness
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/25/2016)... (PRWEB) , ... June 25, 2016 , ... On Friday, ... presented a Bronze Wellness at Work award to iHire in recognition of their exemplary ... part of the 7th annual Maryland Workplace Health & Wellness Symposium at the BWI ...
(Date:6/24/2016)... ... ... crisis. Her son James, eight, was out of control. Prone to extreme mood shifts and ... him, he couldn’t control his emotions,” remembers Marcy. “If there was a knife on ... say he was going to kill them. If we were driving on the freeway, ...
(Date:6/24/2016)... ... ... Inc, makers of Topricin and MyPainAway Pain Relief Products, join The ‘Business for a Fair ... hour by 2020 and then adjusting it yearly to increase at the same rate as ... the wage floor does not erode again, and make future increases more predictable. , The ...
(Date:6/24/2016)... ... June 24, 2016 , ... Strategic Capital Partners, ... economy by obtaining investment capital for emerging technology companies. SCP has delivered ... already resulted in more than a million dollars of capital investment for five ...
(Date:6/24/2016)... ... June 24, 2016 , ... Finally, a bruise cream ... procedures, dermaka cream can be incorporated into the post-surgical treatment plans of a variety ... , dermaka cream is very effective for bruising and causes a rapid resolution ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... , June 24, 2016 According ... by Type (Standard Pen Needles, Safety Pen Needles), Needle ... GLP-1, Growth Hormone), Mode of Purchase (Retail, Non-Retail) - ... This report studies the market for the forecast period ... reach USD 2.81 Billion by 2021 from USD 1.65 ...
(Date:6/23/2016)... Research and Markets has announced the addition of the ... report to their offering. ... failure, it replaces the function of kidneys by removing the ... the treatment helps to keep the patient body,s electrolytes such ... Increasing number of ESRD patients & substantial healthcare expenditure on ...
(Date:6/23/2016)... , June 23, 2016 Research ... MEMS Devices Medical Market Analysis 2016 - Forecast to 2022" ... The report contains up to date financial data ... analysis. Assessment of major trends with potential impact on the ... analysis of market segmentation which comprises of sub markets, regional ...
Breaking Medicine Technology: