Navigation Links
Scientists find potential new use for cancer drug in gene therapy for blood disorders
Date:6/26/2014

LA JOLLA, CA June 26, 2014 Scientists working to make gene therapy a reality have solved a major hurdle: how to bypass a blood stem cell's natural defenses and efficiently insert disease-fighting genes into the cell's genome.

In a new study led by Associate Professor Bruce Torbett at The Scripps Research Institute (TSRI), a team of researchers report that the drug rapamycin, which is commonly used to slow cancer growth and prevent organ rejection, enables delivery of a therapeutic dose of genes to blood stem cells while preserving stem cell function.

These findings, published recently online ahead of print by the journal Blood, could lead to more effective and affordable long-term treatments for blood cell disorders in which mutations in the DNA cause abnormal cell functions, such as in leukemia and sickle cell anemia.

Improving Gene Delivery to Blood Stem Cells

Viruses infect the body by inserting their own genetic material into human cells. In gene therapy, however, scientists have developed "gutted" viruses, such as the human immunodeficiency virus (HIV), to produce what are called "viral vectors." Viral vectors carry therapeutic genes into cells without causing viral disease. Torbett and other scientists have shown that HIV vectors can deliver genes to blood stem cells.

For a disease such as leukemia or leukodystrophy, where mutations in the DNA cause abnormal cell function, efficiently targeting the stem cells that produce these blood cells could be a successful approach to halting the disease and prompting the body to produce healthy blood cells.

"If you produce a genetic modification in your blood stem cells when you are five years old, these changes are lifelong," said Torbett. Furthermore, the gene-modified stem cells can develop into many types of cells that travel throughout the body to provide therapeutic effects.

However, because cells have adapted defense mechanisms to overcome disease-causing viruses, engineered viral vectors can be prevented from efficiently delivering genes. Torbett said that when scientists extract blood stem cells from the body for gene therapy, HIV viral vectors are usually able to deliver genes to only 30 to 40 percent of them. For leukemia, leukodystrophy or genetic diseases where treatment requires a reasonable number of healthy cells coming from stem cells, this number may be too low for therapeutic purposes.

This limitation prompted Torbett and his team, including TSRI graduate student Cathy Wang, the first author of the study, to test whether rapamycin could improve delivery of a gene to blood stem cells. Rapamycin was selected for evaluation based on its ability to control virus entry and slow cell growth.

The researchers began by isolating stem cells from cord blood samples. They exposed the blood stem cells to rapamycin and HIV vectors engineered to deliver a gene for a green florescent protein, which causes cells to glow. This fluorescence provided a visual marker that helped the researchers track gene delivery.

The researchers saw a big difference in both mouse and human stem cells treated with rapamycin, where therapeutic genes were inserted into up to 80 percent of cells. This property had never been connected to rapamycin before.

Helping Blood Stem Cells Survive

The researchers also found that rapamycin can keep stem cells from differentiating as quickly when taken out of the body for gene therapy. This is important because scientists need time to work on extracted blood stem cellsyet once these cells leave the body, they begin to differentiate if manipulated into other types of blood cells and lose the ability to remain as stem cells and pass on therapeutic genes.

"We wanted to make sure the conditions we will use preserve stem cells, so if we transplant them back into our animal models, they act just like the original stem cells," said Torbett. "We showed that in two sets of animal models, stem cells remain and produce gene-modified cells."

The researchers hope these methods could someday be useful in the clinic. "Our methods could reduce costs and the amount of preparation that goes into modifying blood stem cells using viral vector gene therapy," said Wang. "It would make gene therapy accessible to a lot more patients."

She said the next steps are to carry out preclinical studies using rapamycin with stem cells in other animal models and then see if the method is safe and effective in humans. The team is also working to delineate the dual pathways of rapamycin's method of action in blood stem cells.


'/>"/>

Contact: Mika Ono
mikaono@scripps.edu
858-784-2052
Scripps Research Institute
Source:Eurekalert  

Related medicine news :

1. Scientists solving the mystery of human consciousness
2. Scientists uncover multiple faces of deadly breast cancer
3. Scientists identify major source of cells defense against oxidative stress
4. Scientists tailor cell surface targeting system to hit organelle ZIP codes
5. Scientists rewrite rulebook on breast cancer in landmark global study
6. Warwick scientists uncover how checkpoint proteins bind chromosomes
7. NIH scientists link quickly spreading gene to Asian MRSA epidemic
8. Joslin scientists identify important mechanism that affects the aging process
9. Scripps Research scientists show how memory B cells stay in class to fight different infections
10. Scientists Map Melanomas Genome
11. A*STAR scientists discover switch to boost anti-viral response to fight infectious diseases
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Scientists find potential new use for cancer drug in gene therapy for blood disorders
(Date:5/26/2016)... ... ... There are nearly 14.5 million people living with and beyond cancer in the ... 2016, communities around the world will gather to recognize these cancer survivors as part ... is an annual worldwide Celebration of Life that is held on the first Sunday ...
(Date:5/26/2016)... , ... May 26, 2016 , ... An April Gallup ... families. , The 550 employees of Sun Health Senior Living (SHSL) may ... that reduces their doctor and prescription copays for the year, while holding the line ...
(Date:5/26/2016)... ... May 26, 2016 , ... ... comprehensive treatment for eating disorders, is opening a brand new child and adolescent ... ages 8-17 and their families with even more specialized eating disorder treatment and ...
(Date:5/26/2016)... (PRWEB) , ... May 26, 2016 , ... ... of Mehling Orthopedics and chief medical officer of Blue Horizon International (BHI), Brian ... Regeneration. The conference was held during May 5-6, 2016 in Chicago, IL, USA. ...
(Date:5/26/2016)... Robles, CA (PRWEB) , ... May 26, 2016 , ... ... bunion (also knowns as a bunionette) treatment was more than humbled by customer demand ... of one of their SKU's mid sale. Now that Bunion Bootie has completely replenished ...
Breaking Medicine News(10 mins):
(Date:5/25/2016)... May 25, 2016 Digital Health Dialog, ... it by the US Patent and Trademark Office ... includes proprietary processes for electronic opt-­in and processing ... wellness programs, HIPAA compliance and otherwise. ... "Our technology allows for individuals ...
(Date:5/24/2016)... , May 24, 2016 ... Markt gebracht, die es Ärzten erlaubt, ihre Expertise ... behandeln: MDLinking kombiniert Live Streaming mit einer Instant-Messaging-Funktion ... zu kommunizieren. Mediziner in Europa, Afrika, Asien und ... bereits für die Plattform registriert. Information ...
(Date:5/24/2016)... HENDERSON, Nev. , May 24, 2016  Diana ... painfully "eats" her organs from the inside out.  This ... her completely dependent on her children and grandchildren to ... of her wheelchair, Diana,s family cannot haul the wheelchair.  ... rides in the car, and Diana is left to ...
Breaking Medicine Technology: