Navigation Links
Scientists discover a mechanism that can send cells on the road to cancer

Using a common virus as a tool for investigating abnormal cell proliferation, a team led by scientists at Cold Spring Harbor Laboratory (CSHL) has succeeded in clarifying an intricate series of biochemical steps that shed light on a way that cancer can begin.

The teams findings are the latest in a long and distinguished line of research at CSHL involving adenovirus, a type of virus that causes the common cold in people, but whose genome contains known oncogenes -- genes whose expression can promote cancer under certain conditions.

Adenovirus carries a number of cooperating genes that modulate cell growth in ways were interested in, said William Tansey, Ph.D., who, along with CSHL professors Scott Lowe, Ph.D., and Gregory Hannon, Ph.D., is one of the teams co-leaders and corresponding author of a paper to be published April 22 in Proceedings of the National Academy of Sciences. Other team members include molecular biologists from Stony Brook University in New York.

Using a Tumor Virus to Illuminate Function

The team focused on an adenoviral oncogene called E1A, and a protein that it codes for with the same name. Both have received a great deal of attention over the years, said Dr. Tansey, and to understand why, it helps to understand why viruses -- in this case, adenovirus, a DNA tumor virus -- is useful to us. We use them as you would use a flashlight, to illuminate important processes inside the cell that help us understand what goes awry in oncogenesis.

Viruses cant reproduce on their own. A DNA virus like adenovirus is little more than a tiny, double-stranded segment of DNA enclosed within a protein shell. It must find a way to enter the nucleus of a living cell and hijack the cells reproductive machinery in order to reproduce itself. Its not adenovirus itself, but the things it does when it enters a cell, that really interest us, Dr. Tansey explained. By looking, in particular, at the activity of the proteins adenovirus codes for -- proteins like E1A -- we are tapping into a kind of natural growth-control mechanism.

The utility of DNA tumor viruses for cancer research is based on the premise that theyve evolved to target the minimum number of cellular pathways necessary for virus propagation, said Dr. Lowe. When things go awry, understanding how a tumor virus like adenovirus promotes cancer can reveal, in turn, the most vulnerable pathways and nodes that are linked to tumorigenesis, Dr. Hannon added.

Commandeering the Cell Cycle

Because a tumor virus needs to commandeer the reproductive machinery of a living cell to survive, it must force the host cell to enter the reproductive, or S-phase, of its cycle. Past research has demonstrated that a protein called E2F is central in the process by which S-phase is activated. When the cell is not reproducing, E2F is known to be inhibited by its binding to another protein, called Rb, or retinoblastoma protein.

Its this regulated association of E2F and Rb that is one of the primary mechanisms through which cells normally progress into S-phase, Dr. Tansey said. The E1A protein, after binding Rb, is capable of physically pulling it off the E2F molecule. This unleashes the cell to replicate its DNA. And this, in turn, can promote transformations associated with cancer.

Recently, its been shown that E1As cancer-promoting activity is more extensive, also involving a gene-regulating protein called p400. Until the CSHL/Stony Brook team published its current paper, no one knew how E1As binding with p400 affected the process.

E1As Role in Another Oncogenic Pathway

The team knew from prior studies that when the E1A and p400 proteins were bound to one another, cellular growth control was disrupted. The question was why this potentially oncogenic effect occurred. What mechanisms were set in motion by the binding of these two proteins?

They hypothesized that the answer could be found in the activity of yet another protein, called Myc, which Dr. Tansey has spent much of his career studying. Myc is an oncoprotein: one that is important in a great many regulatory processes in the cell, and which, when overexpressed, can cause dysregulation that leads to cancer.

Prior work had shown that when E1A was present in a cell, the potentially dangerous Myc protein was stable -- it did not degrade naturally. In new experiments, Tansey and colleagues found that E1As stabilization of the Myc protein was accomplished not, as was suspected by some, by directly inhibiting its degradation in a cellular component called the proteosome, which destroys proteins. Rather, E1A stabilized Myc by promoting its binding with p400.

To recap the complex sequence of events: E1A, when present in a cell, binds to p400. That protein, in turn, forms a complex with Myc which accounts for Mycs stability in cells in which E1A is present. Close study showed that the piece of the E1A protein that was important for stabilizing Myc was the same piece that bound to p400, Dr. Tansey said. And just as E1A can pull the Rb protein away from E2F, initiating a cascade of pathologies potentially leading to oncogenesis, so does the ability of E1A to bind p400 -- and via that connection to engage Myc -- stabilize that oncoprotein and open the door to tumorigenesis.

We know now that the interaction of E1A and p400 is very important in terms of regulating cell growth in normal and cancer cells, Dr. Tansey said. So were taking a cue from the history of work on adenoviruses and were leaving E1A behind to concentrate on Myc and p400. For us, now, the next step is to learn more about the p400-Myc connection.


Contact: Jim Bono
Cold Spring Harbor Laboratory

Related medicine news :

1. Scientists identify novel way to prevent cardiac fibrosis
2. Scientists Explore Human Gene Pool With Help From Microsoft Research
3. Scientists obtain anticancer medicines from the elecampe, a wild plant growing in the Mediterranean
4. Jefferson scientists discovery may help explain smoking-pancreatic cancer link
5. With annual deaths from malaria on the rise: Scientists ask where is all the money going?
6. Stem cells and cancer: Scientists investigate a fine balancing act
7. Scientists Block Prostate Cancer Cells Spread
8. Scientists solve mystery of polyketide drug formation
9. Scientists Uncover How HIV Hides Inside Cells
10. Scientists: New technique identifies molecular biomarkers for disease
11. Princeton Professor David W. C. MacMillan Lectured WuXi PharmaTech Scientists
Post Your Comments:
(Date:11/26/2015)... ... 2015 , ... The Catalent Applied Drug Delivery Institute today ... dose form selection in early phase drug development. The first of these is ... together the UK’s emerging life sciences companies, corporate partners, and investors, at Milton ...
(Date:11/26/2015)... ... November 26, 2015 , ... PRMA Plastic Surgery is updating ... our surgeons performed their 6,000th free flap breast reconstruction surgery! , “What an accomplishment ... day excited to rebuild lives and it’s an honor to have served all of ...
(Date:11/26/2015)... ... 26, 2015 , ... Pixel Film Studios brings Final Cut ... Vintage. This newly styled ProTrailer pack comes with 30 all-new vintage-inspired designs, with ... users limitless opportunities to stylize and create designs quickly and easily, all within ...
(Date:11/26/2015)... , ... November 26, 2015 , ... Indosoft Inc., developer ... of an application server to improve system efficiency and reliability. , The new Q-Suite ... of these standards, the system avoids locking itself into a specific piece of software ...
(Date:11/25/2015)... ... November 25, 2015 , ... As part of a global ... attracts volunteers together who want to combine talents and resources to help create ... the process. The non-profit launched its first major fundraiser on November 6, 2015 ...
Breaking Medicine News(10 mins):
(Date:11/26/2015)... , November 26, 2015 ... addition of the "2016 Future Horizons ... of Abuse Testing Market: Supplier Shares, Country ... report to their offering. --> ... the "2016 Future Horizons and Growth ...
(Date:11/26/2015)... 26, 2015 ... of the  "2016 Future Horizons and ... Drug Monitoring (TDM) Market: Supplier Shares, ... Opportunities"  report to their offering.  ... the addition of the  "2016 Future ...
(Date:11/26/2015)... Nov. 26, 2015 Research and Markets ... the "2016 Future Horizons and Growth Strategies ... Supplier Shares, Country Segment Forecasts, Competitive Intelligence, Emerging ... --> --> This ... the Italian therapeutic drug monitoring market, including emerging ...
Breaking Medicine Technology: