Navigation Links
Scientists decipher missing piece of first-responder DNA repair machine
Date:10/1/2009

BERKELEY, CA Scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory and the Scripps Research Institute have uncovered the role played by the least-understood part of a first-responder molecule that rushes in to bind and repair breaks in DNA strands, a process that helps people avoid cancer.

With this final piece of the puzzle in place, scientists can better understand how the repair mechanism fends off cancer in healthy people, and conversely, how it helps cancer cells resist chemotherapy. This could enable researchers to develop more effective therapies with fewer side effects.

The team deciphered the poorly understood component using innovative x-ray imaging techniques at Berkeley Lab's Advanced Light Source, which generates intense light for scientific research. They found that it extends from the repair machinery like a flexible arm and grabs molecules that are needed to help the machine zip severed DNA strands back together.

Their work is published in the October 2, 2009 issue of the journal Cell.

"This not only reveals how life works at a fundamental level, but also promises to guide the development of cancer treatments," says John Tainer of Berkeley Lab's Life Sciences Division and the Scripps Research Institute in La Jolla, CA. Tainer co-led the research with Paul Russell of the Scripps Research Institute.

The first-responder machine, a protein complex called Mre11-Rad50-Nbs1 (or MRN for short), homes in on the gravest kind of breaks in which both strands of a DNA double helix are cut. It then stops the cell from dividing and launches an error-free DNA repair process called homologous recombination, which replaces defective genes. If unrepaired, double strand breaks can lead to the proliferation of cancer cells.

Unfortunately, MRN's laser-like focus on DNA repair means that it also mends broken DNA in cancerous cells. This sometimes stymies chemotherapy treatments that kill cancer cells by inducing double strand DNA breaks.

Because of its key roles good and bad scientists have painstakingly studied MRN since 1995 to learn how it works in healthy people, how its mutations promote diseases such as cancer, and to possibly disable it during cancer treatment.

Despite more than a decade of effort, a critical part was missing: a protein called Nsb1 that is represented by the 'N' in MRN.

To determine Nsb1's function, the team used an Advanced Light Source beamline called SIBYLS, which yields extremely high-resolution images of the crystal structure of a protein via a technique called x-ray crystallography. The beamline is also equipped with small-angle x-ray scattering, which can determine a protein's overall architecture in solution, a critical step that approximates how a protein appears in its natural state such as inside a cell.

The scientists trained these two tools on human and yeast Nsb1 proteins. (DNA repair is so essential to life that many of the molecular machines that perform it have changed little throughout evolution). Importantly, the team studied Nbs1 bound to a partner protein that opens DNA during the first steps of double strand break repair. This enabled them to observe Nsb1 at work.

They found that Nbs1 attaches to the MR protein complex precisely where the protein complex converges on the DNA break. Nsb1 also bends in the middle like an elbow to channel molecules to the repair site.

These insights offer the best glimpse yet of how Nsb1 works and how damaged Nsb1 can lead to disease. It also suggests ways to monkey wrench MRN so that it can't repair DNA during chemotherapy. Perhaps a molecule can be wedged into Nsb1's elbow joint so it can't bend, rendering the MRN complex useless.

"These crystal and solution structures have given us an exciting leap forward in our understanding of the Nbs1 and how defects in the protein cause disease," says Scott Classen of Berkeley Lab's Physical Biosciences Division.

Adds Tainer, "Understanding how the body responds to DNA breaks is fundamental for cancer interventions and gene therapies. These results open the door to controlling the repair of DNA breaks for cancer therapeutics and gene targeting."


'/>"/>

Contact: Dan Krotz
dakrotz@lbl.gov
510-486-4019
DOE/Lawrence Berkeley National Laboratory
Source:Eurekalert  

Related medicine news :

1. University of Louisville neuroscientists hope to get people walking again
2. Oldest Skeleton in Human Family Tree Surprises Scientists
3. Scientists find obesity alone does not cause arthritis in animals
4. 2009 American Association of Pharmaceutical Scientists Annual Meeting and Exposition
5. Scientists Discover How Chemo Can Make Women Infertile
6. Scientists May Know How Lung Cancer Spreads
7. UCSF scientists illuminate how microRNAs drive tumor progression
8. Glaxo Official Memo Urged Scientists to Withhold Information About Paxils Risks, Trial Hears; Pharmaceutical Industry Today Offers Complete News Coverage
9. University of Hawaii at Manoa CRCH scientists report adulthood body size associated with cancer risk
10. Scientists Spot Key to Breast Cancer Spread
11. Scientists Find Clue to Dangerous Side Effect of MS Drug
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Scientists decipher missing piece of first-responder DNA repair machine
(Date:6/27/2016)... Park, KS (PRWEB) , ... June 27, 2016 , ... ... in retailers of Eyeglasses . , Millions of individuals in the United States ... eyeglasses have become a way to both correct vision and make a fashion statement. ...
(Date:6/26/2016)... Carolina (PRWEB) , ... June 26, 2016 , ... ... of a new product that was developed to enhance the health of felines. The ... centuries. , The two main herbs in the PawPaws Cat Kidney Support ...
(Date:6/25/2016)... ... 25, 2016 , ... Austin residents seeking Mohs surgery services, can now turn ... to Dr. Russell Peckham for medical and surgical dermatology. , Dr. Dorsey brings specialization ... selective fellowship in Mohs Micrographic Surgery completed by Dr. Dorsey was under the direction ...
(Date:6/25/2016)... CA (PRWEB) , ... June 25, 2016 , ... As ... with Magna Cum Laude and his M.D from the David Geffen School of Medicine ... and returned to Los Angeles to complete his fellowship in hematology/oncology at the UCLA-Olive ...
(Date:6/24/2016)... ... June 24, 2016 , ... A recent article published June 14 ... The article goes on to state that individuals are now more comfortable seeking to ... operations such as calf and cheek reduction. The Los Angeles area medical group, Beverly ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... 2016   Pulmatrix, Inc ., (NASDAQ: ... drugs, announced today that it was added to the ... its comprehensive set of U.S. and global equity indexes ... important milestone for Pulmatrix," said Chief Executive Officer ... our progress in developing drugs for crucial unmet medical ...
(Date:6/24/2016)...  Arkis BioSciences, a leading innovator in the ... cerebrospinal fluid treatments, today announced it has secured ... led by Innova Memphis, followed by Angel Capital ... Arkis, new financing will accelerate the commercialization of ... of its in-licensed Endexo® technology. ...
(Date:6/23/2016)... -- Research and Markets has announced the addition ... 2022" report to their offering. ... with kidney failure, it replaces the function of kidneys by ... and thus the treatment helps to keep the patient body,s ... Increasing number of ESRD patients & substantial healthcare ...
Breaking Medicine Technology: