Navigation Links
Rice wins $1.2 million for heart-valve tissue research

A team of bioengineers from Rice University is bringing a promising new strategy for growing replacement heart valves closer to reality, thanks to a four-year, $1.2 million grant from the National Institutes of Health. The team hopes to use gel-like materials to generate three-dimensional patterns called scaffolds that can simultaneously mimic the complex structural and physical properties of heart-valve tissues and guide the behavior of tissue-forming cells.

Tissue-engineering researcher Jane Grande-Allen, the lead investigator on the grant, said researchers once believed that replacement heart valves would be one of the easiest and first tissues that could be grown in the laboratory. At just a millimeter thick, the rugged flaps of tissue in heart valves seemed simple enough when researchers first started trying to engineer them in the mid-1990s.

"It's ironic because they turned out to be one of the most difficult and complex tissues of all," said Grande-Allen, associate professor in bioengineering at Rice.

Grande-Allen said it's been difficult for engineers to find synthetic materials that truly mimic the complex structure and mechanical properties of heart-valve "leaflets," the tough yet flexible flaps of tissue that form a tight seal to prevent blood from flowing backward each time the heart pumps. Having materials that can both mimic the leaflets' microscopic structure and act as a pattern for tissue-forming stem cells has been a missing link in growing replacement heart valves.

Each aortic or pulmonary heart valve contains a trio of leaflets. Prior to each heartbeat, the leaflets open, like the petals of a blooming flower, allowing blood to flow into one of the heart's chambers. Then the leaflets fold back, interlocking with one another to form a tight seal that prevents blood from flowing backward. In cases of heart-valve disease, the valves don't seal properly, and the heart must pump much harder to deliver sufficient amounts of blood.

More than 90,000 Americans are hospitalized each year for heart-valve disease, and with too few human valves available for transplant, the most common surgical options are mechanical valves, which are noisy and require patients to stay on anticlotting medications for life, and artificial valves made of biological material, usually from pigs, which wear out after about 15 years.

Ideally, tissue engineers would like to grow living valves that use a patient's own cells to eliminate the risk of tissue rejection. But engineers have struggled to find nontoxic, biodegradable materials that can act as a scaffold to guide the cells' behavior. The ideal scaffold will have the same mechanical properties of a valve so that it can be surgically implanted and function as a valve, even as cells grow new tissue to replace it.

Grande-Allen said the fact that valve leaflets have three distinct layers has presented serious complications to creating scaffolds. Leaflets have a soft, malleable layer sandwiched between denser outer layers. The soft layer adds flexibility and sits between outer layers that have subtly different properties. The upshot is that to truly mimic the valves, engineers must design a multilayered scaffold.

"That hasn't been done before, but we have a real shot at success with some of the new methods that have been developed here at Rice in recent months that will allow us to cross-link, layer and reinforce hydrogel scaffolds to have spatially varying mechanical behavior," Grande-Allen said.

Grande-Allen and co-principal investigator Jennifer West, department chair and the Isabel C. Cameron Professor of Bioengineering at Rice, will work with several graduate students to create a multilayered, patterned scaffold with new techniques initially developed by West's team and then further refined in collaboration with Grande-Allen's laboratory. The key technique is one that allows researchers to selectively reinforce soft, nontoxic polymer scaffolds so that they'll mimic the various leaflet layers and won't peel apart.

"We're taking a very pragmatic approach," Grande-Allen said. "We have the tools to make a lot of headway in designing appropriate patterns, but we want to make certain the class of materials that we're planning to work with will ultimately be translatable to create functional valves."

Grande-Allen's and West's laboratories are located in Rice's BioScience Research Collaborative (BRC), an innovative space where scientists and educators from Rice and other Texas Medical Center institutions work together to conduct research that benefits human medicine and health.


Contact: David Ruth
Rice University

Related medicine news :

1. Amway One by One Campaign for Children Reaches 7 Million Kids
2. Michael J. Fox Foundation Awards $1 Million to Drive Critical New Research Tools and Technologies in Parkinsons Drug Development
3. International Diabetes Federation awards $2 million to 9 global diabetes research projects
4. New Report: $1 Cigarette Tax Increase Would Raise $418.8 Million for Texas and Cut Youth Smoking
5. New Report: $1 Cigarette Tax Increase Would Raise $18.6 Million for Montana and Cut Youth Smoking
6. New Report: $1 Cigarette Tax Increase Would Raise $24.8 Million for Wyoming and Cut Youth Smoking
7. New Report: $1 Cigarette Tax Increase Would Raise $43.3 Million for Utah and Cut Youth Smoking
8. New Report: $1 Cigarette Tax Increase Would Raise $113.9 Million for Colorado and Cut Youth Smoking
9. New Report: $1 Cigarette Tax Increase Would Raise $65.3 Million for Iowa and Cut Youth Smoking
10. Kaiser Permanente Approves $170 Million in Community Benefit Grants in 2009
11. America's Hidden Pandemic: 100 Million Suffer From Sleep Problems
Post Your Comments:
(Date:11/25/2015)... ... November 25, 2015 , ... “While riding the bus, I ... Bronx, N.Y. “I thought there had to be a convenient and comfortable way to ... The PROTECTOR enables disabled individuals to safely travel during cold or inclement weather. In ...
(Date:11/25/2015)... , ... November 25, 2015 , ... ... (PHA) announces the nation’s Periwinkle Pioneers, individuals and groups responsible for advancing care ... disease. The Periwinkle Pioneers, nominated by the public, will receive special recognition throughout ...
(Date:11/25/2015)... ... November 25, 2015 , ... ... philanthropic seniors, is resulting in a way for homeless people to have a ... have launched a new initiative whereby they are repurposing plastic bags into sleeping ...
(Date:11/25/2015)... ... November 25, 2015 , ... Since its launch in 2012, ... adult stem cell therapies to patients with chronic degenerative medical conditions. Now, the ... Registered Trademark (RTM). , Organizations are required to hold a registered trademark in ...
(Date:11/24/2015)... ... November 25, 2015 , ... Genesis Chiropractic Software ... software creates an agreement between the practice owner and the patient that automatically ... notification, and projections. Click here to learn more. , ...
Breaking Medicine News(10 mins):
(Date:11/24/2015)... FRANCISCO , Nov. 24, 2015  Thanks to ... Dignity Health St. Mary,s Medical Center,s Sister Diane Grassilli ... breast imaging capabilities in San Francisco ... an anonymous friend, stepped forward with a gift of ... for Breast Digital Mammography with Tomosynthesis and Whole Breast ...
(Date:11/24/2015)... Colo. , Nov. 24, 2015  Array ... that its Chief Executive Officer, Ron Squarer ... Healthcare Conference in New York.  The public is ... webcast on the Array BioPharma website.Event:Piper Jaffray Annual ... , Wednesday, December 2, 2015Time:1:30 p.m. Eastern Time ...
(Date:11/24/2015)... HOUSTON, TX and VANCOUVER, Nov. 24, 2015 /PRNewswire/ ... EPI; NASDAQ: EPIX ) announced today that the ... clinical study of EPI-506 as a treatment for metastatic ... States and Canada.  --> ... --> In the Phase 1/2 clinical trial, ...
Breaking Medicine Technology: