Navigation Links
Researchers use cell 'profiling' to detect abnormalities -- including cancer
Date:1/25/2011

COLUMBUS, Ohio -- An Ohio State University mathematician and his colleagues are finding ways to tell the difference between healthy cells and abnormal cells, such as cancer cells, based on the way the cells look and move.

They are creating mathematical equations that describe the shape and motion of single cells for laboratory analysis.

Though this research is in its early stages, it represents an entirely new way of identifying cell abnormalities, including cancer. It could one day be useful in gauging future stages of a disease -- for example, by detecting whether cancer cells are aggressive and likely to spread throughout the body, or metastasize.

In a paper published online in the Bulletin of Mathematical Biology, researchers describe a mathematical model which analyzes image sequences of single, live cells to determine abnormalities manifested in their shape and behavior. A brain tumor cell was one of the cell types they analyzed in the study.

Huseyin Coskun, visiting assistant professor of mathematics at Ohio State and leader of the project, described their novel approach as a first step toward developing mathematical tools for diagnosing cell abnormalities and for giving potential prognoses.

Because the technique would allow doctors to view how cancer cells behave under different physical or chemical conditions, it could also be used to test different treatment strategies for each individual patient -- such as determining the most efficient dose of chemotherapeutic agents or radiation -- or even to test entirely new treatments.

In addition, Coskun sees his technique as a tool for also pathologists, who typically look at photographs of biopsied cells to identify cancer and judge how advanced the cancer may be.

"A pathologist can diagnose cancer, but as far as predicting the future, they don't have many tools at their disposal -- particularly if a cancer is in its early stages," Coskun said. "That's why I believe that one of the most important applications of this research is profiling cancer cells. Given a cell's motion and its morphological changes, we want to be able to determine what's happening inside the cell. If it looks like a cancer cell, and a particularly aggressive one, we would like to quantify how likely it is that the cancer cells will invade the body."

In a very basic sense, diagnosing a "sick" cell such as a cancer cell by its appearance, motion, and behavior is analogous to diagnosing a sick human, he said. "When we get sick, our behavior changes. We may stay in bed, sleep a lot -- maybe we are coughing or sneezing. These are basic symptoms that a doctor will consider to determine if we're sick. Abnormalities oftentimes manifest themselves as behavioral changes in all living organisms. Therefore, a careful analysis of and profiling the behavioral patterns of single cells could provide valuable information."

Cell motion is important for all life, he continued. White blood cells move when they attack microbes that have invaded the body. A wound heals when newly grown cells move in to close it. But something about aggressive cancer cells causes them to move from the tumor where they originated into the blood stream, where they migrate to different organs and grow out of control.

Living cells often change shape, expand, or contract, and Coskun believes that he and his colleagues can create unique "personality profiles" of cancer cells.

Coskun and his colleague, Hasan Coskun, assistant professor of mathematics at Texas A&M University-Commerce, used a branch of physics called continuum mechanics to derive equations that describe cells' appearance and behavior. They compared their model outcomes to findings from past cancer studies, which indicated that cancer cells are more deformable than normal cells.

The researchers discovered that their model results agree with those experimental findings.

Obtaining data from live cell image sequences to use as an input in the mathematical models is not easy. For this, Coskun collaborated with Hakan Ferhatosmanoglu, an associate professor, and his then-student, Ahmet Sacan, both of computer science and engineering at Ohio State. They created open source software called CellTrack to extract data from movies of cell motion.

Given a movie of live cells under the microscope, CellTrack tracks individual cells, extracts data that can be used in the mathematical models, and provides other useful statistical information about the motion.

Huseyin Coskun acknowledged the current limits of his methodology. The researchers were able to show that their mathematical models can be applied to analyze single cell motion and obtain useful information. They were also able to hypothesize a biological explanation for very complex mechanism of cell motion based on their mathematical model outcomes. But he and his partners need many more high-resolution movies of healthy cells and cancer cells to build upon this initial work. That's why Coskun is setting up collaborations with medical researchers at Ohio State and other universities.

Coskun believes that mathematical techniques such as his are becoming more common in the biomedical sciences because they allow researchers to perform studies that would be too difficult, time-consuming or expensive in real life. He hopes his technique could be used to answer emerging questions in cell biology.


'/>"/>

Contact: Huseyin Coskun
coskun.5@osu.edu
614-292-5131
Ohio State University
Source:Eurekalert

Related medicine news :

1. Researchers map all the fragile sites of the yeast Saccharomyces cerevisiaes genome
2. UH Case Medical Center researchers publish promising findings for advanced cervical cancer
3. Researchers discover new way to kill pediatric brain tumors
4. Researchers Who Discovered First Genes for Stuttering will Present Findings to the National Stuttering Association
5. Researchers create drug to keep tumor growth switched off
6. Urine protein test might help diagnose kidney damage from lupus, UT Southwestern researchers find
7. GUMC researchers say flower power may reduce resistance to breast cancer drug tamoxifen
8. Clemson researchers develop hands-free texting application
9. Researchers find biomarkers in saliva for detection of early-stage pancreatic cancer
10. Researchers chart genomic map spanning over 2 dozen cancers
11. Researchers discover second protective role for tumor-suppressor
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/13/2017)... (PRWEB) , ... October 13, 2017 , ... Apple ... care services, staged a mock evacuation of the facility as part of a disaster ... Fire Department, Echo Hose EMS and Shelton City Emergency Manager, as well as the ...
(Date:10/13/2017)... , ... October 13, 2017 , ... Global Healthcare Management’s ... Alexandria Park in Milford, NJ. This free event, sponsored by Global Healthcare Management’s ... The fun run is geared towards children of all ages; it is a ...
(Date:10/13/2017)... ... October 13, 2017 , ... “The Journey: From the ... danger possible to save lost souls in the Philippines. “The Journey: From the Mountains ... a dedicated teacher of the Bible. She has taught all ages and currently teaches ...
(Date:10/12/2017)... ... October 12, 2017 , ... Planet Fitness, one of the largest and ... plans to open a flagship location in Covington, LA at 401 N. U.S. Highway ... store next to Office Depot in the Holiday Square shopping center. Its location allows ...
(Date:10/12/2017)... ... 2017 , ... Asante, a nationally recognized health system in ... existing home health joint venture through an agreement, effective October 1, 2017, to ... home health company with Asante, delivering clinically integrated care, for the past eight ...
Breaking Medicine News(10 mins):
(Date:10/10/2017)... -- NDS received FDA 510(k) clearance in May 2017 for its highly ... designed for endoscopy environments. An innovative secondary monitor solution, ZeroWire ... support the improvement of patient outcomes, procedural efficiency, and the lowering ... ... ...
(Date:10/4/2017)... 4, 2017  South Korean-based healthcare product Development Company ... "cprCUBE" on Kickstarter. The device will educate the user ... with better efficiency compared to the dated and pricey ... on efficacy of the compression for a more informed ... goal to raise $5,000. ...
(Date:10/2/2017)... 2017  Eli Lilly and Company (NYSE: ... third quarter of 2017 on Tuesday, October 24, 2017. ... day with the investment community and media to further ... call will begin at 9 a.m. Eastern time. Investors, ... webcast of the conference call through a link that ...
Breaking Medicine Technology: