Navigation Links
Researchers make promising discovery in pursuit of effective lymphoma treatments
Date:5/16/2012

NEW YORK, May 16, 2012 Researchers at NYU School of Medicine have identified a target for slowing the progression of multiple myeloma by using currently available drugs.

Published recently in Nature Cell Biology, the study reveals a pathway that, if deactivated, may help slow the development of the disease.

"We have the ability to target this pathway with drugs that already exist," said lead investigator Michele Pagano, MD, the May Ellen and Gerald Jay Ritter Professor of Oncology in the Department of Pathology and a member of the NYU Cancer Institute at NYU Langone Medical Center, and a Howard Hughes Medical Institute investigator. "Many other lymphomas are also controlled by this pathway, so while we're optimistic that this discovery will provide a way to kill multiple myeloma cells, we're also very hopeful that this can be applied to other lymphomas and that it will have a major impact on these aggressive cancers."

Pagano and colleagues put together several new pieces of the puzzle surrounding the survival and spread of multiple myeloma cells and the Nuclear Factor kappa B (NF-кB) pathway. This complicated pathway induces transcription of genes that control inflammation, immunity, and certain developmental processes. It is also known to frequently be involved in disease.

In normally functioning cells, the NF-кB pathway turns off and on, triggered by the accumulation and then degradation, or breakdown, of a protein called p100. When the pathway is "on," p100 is degraded, allowing for pathway-dependent gene transcription. Several hours after the pathway's activation, p100 begins to accumulate in the cell's nucleus, naturally blocking the pathway, so that the gene transcription signal is temporarily blocked and transcription is halted.

In lymphomas, including multiple myeloma, however, the NF-кB pathway remains active, providing a refuge for lymphoma cells to hide. In fact, within this active pathway, the lymphoma cells are able to evade apoptosis, or cell death, allowing them to proliferate in an uncontrolled way.

"Activating mutations in the NF-кB pathway does not generally represent the initial oncogenic event," Dr. Pagano said. "But they are necessary for the survival and spread of the cancer."

Dr. Pagano explained the steps involved with pathway's activation and deactivation in more scientific detail: The process begins in the pathway's off state, with the accumulation of p100. To clear the pathway and naturally turn it back on, a sequence of events has to happen. First, a kinase, which the team identified as GSK3, phosphorylates p100. The phosphorylation draws the attention of Fbxw7α, a subunit of a ubiquitin ligase, which binds to the portion of p100 that has been phosphorylated by GSK3. The addition of Fbxw7α to the p100 protein then causes ubiquitin to seek out p100. Ubiquitin attaches to the protein and modifies it in a way such that it is recognized by a protease whose job it is to recognize and degrade any protein that has been modified by ubiquitin conjugation. As a result, p100 is degraded in the nucleus of the cell and the pathway is cleared and activated, turning on the gene transcription signal.

These new findings lead the researchers to conclude that the intersection of GSK3, Fbxw7α and p100 may serve as a potential intervention point for the treatment of multiple myeloma. Researchers believe if they can find a way to target the elimination of p100 they may be able to inactivate the pathway, which would eliminate the tumor cells' safe haven so that they would be susceptible to apoptosis. This would in turn promote the death of multiple myeloma cells.

According to Dr. Pagano, this strategy may not be too far from becoming a reality. There are already drugs being tested in clinical trials for Alzheimer's Disease that work by inhibiting GSK3. With the current study, the research team from NYU School of Medicine has shown that, by blocking GSK3 from phosphorylating p100, it is possible to prevent the degradation of p100, which then blocks the NF-кB pathway, thereby halting gene transcription and blocking tumor cells' safe zone. Alternatively, pharmaceutical research may find a way to target Fbxw7α, which would keep the pathway turned off in the same way.

"Cancers are persistent and tenacious," Dr. Pagano said. "There are millions of pieces to the puzzle of how they work and we've discovered a few more pieces of that puzzle. It is very possible that we can find an inhibitor of Fbxw7α since there are already drugs being tested that inhibit very similar enzymes."

Moreover, Dr. Pagano explained, it is likely that the effects observed in multiple myeloma may be generalized to other B-cell neoplasms, types of lymphomas, especially those in which the tumor cells hide out in the NF-кB pathway.

"These new findings strongly suggest that by targeting this enzyme, we will kill multiple myeloma cells and other B-cell lymphomas," he said. "And that, from a researcher's perspective, is a very exciting prospect."


'/>"/>

Contact: Jessica Guenzel
jessica.guenzel@nyumc.org
212-404-3591
NYU Langone Medical Center / New York University School of Medicine
Source:Eurekalert

Related medicine news :

1. Breast cancer effectively treated with chemical found in celery, parsley by MU researchers
2. New biomarker test predicts arthritis at much earlier stage, MU researchers say
3. Researchers Test Laxative-Free Colon Scan
4. Mayo Clinic researchers discover biomarkers for prostate cancer detection, recurrence
5. Researchers discover how to overcome poor response to radiotherapy caused by low haemoglobin levels
6. Researchers see BPA effects in monkey mammary glands
7. Geisel researchers sift through junk to find colorectal cancer clues
8. Email vacations decrease stress, increase concentration, researchers say
9. Researchers Rejuvenate Blood-Forming Stem Cells in Mice
10. CNIO researchers describe new functions of cohesin relevant for human disease
11. Biomedical researchers receive Hartwell Foundation awards
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/3/2016)... (PRWEB) , ... May 03, 2016 , ... Healing ... help cancer patients and their families move toward recovery and is offered by creator ... today's Dr. Carol Francis Talk Radio show considering medical and healing modalities ...
(Date:5/3/2016)... ... 03, 2016 , ... For over 23 years, Doctors on Liens ... network of doctors and therapists treating personal injury patients on a lien basis. With ... Chiropractic and Rehabilitation in Santa Monica, Doctors on Liens is continuing that tradition. ...
(Date:5/3/2016)... ... May 03, 2016 , ... ... – a web application that helps people assess their risk of developing Alzheimer’s ... app will provide users a “Risk Reduction Score™” that summarizes how their lifestyle ...
(Date:5/3/2016)... ... ... Calvary Hospital recently hosted a reception to mark a new music program to ... Manning Walsh Home (MMW) in Manhattan. , During the school year, a student ... a week. The music brings a lot of joy to the patients, family members ...
(Date:5/3/2016)... Baltimore, Md. (PRWEB) , ... May 03, 2016 , ... ... devastating consequences of inappropriate or excessive levels of alcohol use. Alcohol and its ... fetal alcohol spectrum disorders to the susceptibility to strokes in those 65 years and ...
Breaking Medicine News(10 mins):
(Date:5/3/2016)... 4, 2016 Research and Markets ... Stem Cell Therapy Market Outlook 2020" report to ... ) , ,Recombinant technology has improved significantly in past ... be developed in coming years. Many cancer drugs have ... cell therapies are also expected to be developed with ...
(Date:5/3/2016)... 3, 2016  Axiogenesis has acquired a major investment from Sino-German High-Tech Fund to further expand product development, strengthen ... http://photos.prnewswire.com/prnh/20160503/362921 ... ... ... ...
(Date:5/3/2016)... , May 3, 2016  As a teenager, ... contracted rheumatic fever, which damaged his heart. He continued ... But by June 2013, Shepherd,s heart was giving out ... death. On June 20, 2013, the Mesa, ... Artificial Heart (TAH-t). Like a heart transplant, the SynCardia ...
Breaking Medicine Technology: