Navigation Links
Researchers identify genetic signature of deadly brain cancer

A multi-institutional team of researchers have pinpointed the genetic traits of the cells that give rise to gliomas the most common form of malignant brain cancer. The findings, which appear in the journal Cell Reports, provide scientists with rich new potential set of targets to treat the disease.

"This study identifies a core set of genes and pathways that are dysregulated during both the early and late stages of tumor progression," said University of Rochester Medical Center (URMC) neurologist Steven Goldman, M.D., Ph.D., the senior author of the study and co-director of the Center for Translational Neuromedicine. "By virtue of their marked difference from normal cells, these genes appear to comprise a promising set of targets for therapeutic intervention."

As its name implies, gliomas arise from a cell type found in the central nervous system called the glial cell. Gliomas progress in severity over time and ultimately become highly invasive tumors known as glioblastomas, which are difficult to treat and almost invariably fatal. Current treatments, which include surgery, radiation therapy, and chemotherapy, can delay disease progression, but ultimately prove ineffective.

Cancer research has been transformed over the past several years by new concepts arising from stem cell biology. Scientists now appreciate that many cancers are the result of rogue stem cells or their offspring, known as progenitor cells. Traditional cancer therapies often do not prevent a recurrence of the disease since they may not effectively target and destroy the cancer-causing stem cells that lie at the heart of the tumors.

Gliomas are one such example. The source of the cancer is a cell found in the brain called the glial progenitor cell. The cells, which arise from and maintain characteristics of stem cells, comprise about three percent of the cell population of the human brain. When these cells become cancerous they are transformed into glioma stem cells, essentially glial progenitor cells whose molecular machinery has gone awry, resulting in uncontrolled cell division.

Goldman and his team have long studied normal glial progenitor cells. These cells produce glia, a category that includes both astrocytes cells that support the function of neurons and oligodendrocytes cells that produces myelin, the fatty insulation that allows the long-distance conduction of neural impulses.

While Goldman's group's work has primarily focused on ways to use glial progenitor cells to treat neurological disorders such as multiple sclerosis, their understanding of the biology of these cells and mastery of the techniques required to sort, identify, and isolate these cells has also enabled them to explore the molecular and genetic changes that transform these cells into cancers.

Using human tissue samples representing the three principal stages of the cancer, the researchers were able to identify and isolate the cancer-inducing stem cells. Working with Goldman, lead authors Romane Auvergne, Ph.D. and Fraser Sim, Ph.D. then compared the gene expression profiles of these cancer stem cells to those of normal glial progenitor cells. The objective was to both pinpoint the earliest genetic changes associated with cancer formation and identify those genes that were unique to the cancer stem cells and were expressed at every stage of disease progression.

Out of a pool over 44,000 tested genes and sequences, the scientists identified a small set of genes in the cancerous glioma progenitor cells that were over-expressed at all stages of malignancy. These genes formed a unique "signature" that identified the tumor progenitor cells and enabled the scientists to define a corresponding set of potential therapeutic targets present throughout all stages of the cancer.

"One of the key things you are looking for in drug development in cancer is a protein or gene that is over-expressed, so that you can attempt to achieve therapeutic benefit by inhibiting it," said Goldman.

The researchers chose to test this hypothesis by targeting one such gene, called SIX1, which was highly overexpressed in the glioma progenitor cells. While this particular gene is active in the early development of the nervous system, it had not been observed in the adult brain before. However, SIX1 signaling has been associated with breast and ovarian cancer, raising the possibility of its contribution to brain cancer as well. This turned out to indeed be the case. When the researchers blocked or knocked down the expression of this gene, the tumor cells ceased growing, and implanted tumors shrank.

"This study gives us a blueprint to develop new therapies," said Goldman. "We can now devise a strategy to systematically and rationally analyze and eliminate glioma stem and progenitor cells using compounds that may selectively target these cells, relative to the normal glial progenitors from which they derive. By targeting genes like SIX1 that are expressed at all stages of glioma progression, we hope to be able to effectively treat gliomas regardless of their stage of malignancy. And by targeting the glioma-initiating cells in particular, we hope to lessen the likelihood of recurrence of these tumors, regardless of the stage at which we initiate treatment."


Contact: Mark Michaud
University of Rochester Medical Center

Related medicine news :

1. NIH awards $20 million over 5 years to train next generation of global health researchers
2. Researchers develop a new cell and animal model of inflammatory breast cancer
3. Researchers uncover a viable way for colorectal cancer patients to overcome drug resistance
4. Researchers Find Gene Mutations That May Be a Key to Autism
5. Researchers find evidence of banned antibiotics in poultry products
6. NJ stroke researchers report advances in spatial neglect research at AAN Conference
7. Autism by the numbers: Yale researchers examine impact of new diagnostic criteria
8. Researchers Map Brain Regions Linked to Intelligence
9. Researchers ID Genes That May Determine Mental Illness
10. Researchers Develop Blood Test for Depression
11. University of Cincinnati researchers win $3.7M grant from US Department of Defense
Post Your Comments:
(Date:10/13/2015)... ... October 13, 2015 , ... Sir Grout of Greater Boston donated an expansive, ... of Ronald McDonald House Charities® (RMHC®). This donation was made in an effort to ... Boston since its inception. , “We believe strongly in the Ronald McDonald House Charities, ...
(Date:10/13/2015)... ... October 13, 2015 , ... ... ENGAGE, at HIMSS’s Patient Engagement Summit . HealthAware is a technology company ... health programs and interventions via mobile devices that provide a framework for the ...
(Date:10/13/2015)... ... 13, 2015 , ... Element Blue ™, a leading ... company, RightSensor™ LLC, an Internet of Things (IoT) hardware supplier that delivers custom ... approach for customers requiring sensor hardware for critical data environments. , RightSensor™, working ...
(Date:10/13/2015)... (PRWEB) , ... October 13, 2015 , ... NavaFit Inc. ... helps individuals find others to train with, participate in local fitness & sporting ... and Google Play. , “As high medical costs drive us to get more serious ...
(Date:10/13/2015)... (PRWEB) , ... October 13, ... ... Postnatal Omega-3, a first-of-its kind product that targets the unique health needs ... Omega-3” of the American Pregnancy Association ( ), utilizes Nordic Naturals’ ...
Breaking Medicine News(10 mins):
(Date:10/13/2015)...   Rosa & Co. LLC , the leading ... (QSP)/ PhysioPD™ , today announced that Dr. Christina ... the QSP Congress Meeting on October 20 ...  The conference focuses on the uses and benefits ... is entitled "Using Mechanistic Physiological Models in Drug Development: ...
(Date:10/13/2015)... 13, 2015 China Jo-Jo Drugstores, ... Jo-Jo "), a leading China-based retail, wholesale and online ... own online and retail pharmacies, announced preliminary half year ... online pharmacy through , growing 438% year ... 25%. China Jo-Jo,s online sales ...
(Date:10/13/2015)... N.C. , Oct. 13, 2015  Yesterday Congresswoman ... Influenza Vaccines Holly Springs manufacturing site located in ... 2014, the facility has produced Flucelvax ® (Influenza ... the potential for faster start-up and is not reliant ... CSL Limited acquired the influenza vaccines business of Novartis ...
Breaking Medicine Technology: