Navigation Links
Researchers exploit genetic 'co-dependence' to kill treatment-resistant tumor cells

BOSTON and CAMBRIDGE--Cancer cells fueled by the mutant KRAS oncogene, which makes them notoriously difficult to treat, can be killed by blocking a more vulnerable genetic partner of KRAS, report scientists at the Dana-Farber Cancer Institute and the Broad Institute of Harvard and MIT.

The laboratory results, published by Nature on its Web site as an advanced online publication and later in a print edition, demonstrate a potential advance against many major tumors which, because they harbor the mutant KRAS cancer gene, are highly aggressive and respond poorly to treatment. By targeting the second, more easily inhibited "co-dependent" gene, TBK, the strategy bypasses the so far unfruitful head-on assault against the highly resistant KRAS gene.

"These results represent a new way of targeting oncogenes that have been refractory to standard treatments," said William Hahn, MD, PhD, senior author of the report, of Dana-Farber, the Broad Institute, and Harvard Medical School (HMS). "What's particularly exciting is that this approach is potentially highly specific to cancer cells, and therefore should have little toxicity to normal tissues."

The first author is David Barbie, MD, of the two institutes and HMS.

The mutant KRAS oncogene acts like a broken switch, allowing runaway cell growth in nearly all pancreatic tumors, about 25 percent of colorectal, and 25 to 30 percent of lung cancers. When physicians detect KRAS mutations in a cancer, it usually predicts the patient won't respond well to standard therapies. "If you have a mutant KRAS, we can't use many of our newest drugs," noted Hahn.

For many years, researchers were hopeful that drugs could be designed to shut down KRAS, but this has proven virtually impossible. However, its co-dependent partner, TBK1, encodes a protein kinase -- a type of molecular switch for which many inhibitors already exist. TBK1 is not a cancer-causing gene, but in KRAS-driven tumors, TBK1 activity enables cancer cells to survive that otherwise would be destroyed by the body because they are abnormal and dangerous.

TBK1 is the second such gene co-dependent with KRAS to be discovered: In May, a team that included Barbie, Hahn, and other researchers reported in Cell that a kinase gene, STK33, had a similar function in KRAS tumors. Senior author of that report was D. Gary Gilliland, MD, PhD of Brigham and Women's Hospital, Dana-Farber, the Broad, and HMS.

The new approach exploits a relationship between the KRAS and TBK1 genes known as "synthetic lethality." The term refers to a partnership in which two genes (usually mutated) in a cell have a combined effect that neither has by itself. In some cases, neither mutation alone will kill a cell but the presence of both is lethal.

In the case of KRAS tumors, the opposite is true: both KRAS and TBK1 must be active for the cancer cell to survive; suppressing one or the other kills the cell.

The key role of TBK1 was identified in a large-scale search using the combined resources of Dana-Farber and the Broad Institute to hunt for genes that were essential exclusively to cells with mutant KRAS, but not to cells with wild-type (non-mutant) KRAS or other normal cells.

Working with scientists in the Broad's RNAi Platform, the team used RNA interference (RNAi) methods to turn off thousands of different genes in 20 laboratory cancer and non-cancer cells. They then sought out genes that, when shut down by short pieces of RNA strands, caused KRAS cells to self-destruct, but had no effect on normal cells. The screening process first identified 45 potential candidates, which were further winnowed in a secondary screen to single out TBK1.

"Until four or five years ago, you couldn't have contemplated doing an experiment like this on so large a scale," noted Hahn. "We now have the tools that make this possible." The new paper and its predecessor "really make it clear that you can do this in human cells."

The discoveries of TBK1 and STK33 are only the first of what the scientists expect will be many more "co-dependent" genes in cancer cells that may prove valuable as drug targets.

"We plan to screen 300 cell lines over the next couple of years," said Hahn. "The aim is to create a dataset in which any investigator can say, 'I'm looking for genes that interact with this oncogene or that tumor-suppressor gene.' Our intent is to make these data public in order to help move the field forward."

In the meantime, Hahn said there is considerable interest in testing existing kinase inhibitors as potential new therapies for KRAS tumors. He added that researchers at Dana-Farber and the Broad are interested in developing novel molecular tools to suppress the action of co-dependent oncogene partners.


Contact: Bill Schaller
Dana-Farber Cancer Institute

Related medicine news :

1. Yerkes researchers present at 39th Annual Society for Neuroscience Conference
2. Patent challenges reduce pharmaceutical innovation and productivity, researchers suggest
3. provides one-stop Web resource for health researchers
4. New Professional Network Brings Chinese Scientists and Researchers into International Community
5. Pitt researchers find candidates for new HIV drugs
6. Researchers discover mechanism that helps humans see in bright and low light
7. New effort to battle antibiotic resistance rallies researchers throughout Harvard University
8. Researchers report benefits of new standard treatment study for rare pediatric brain cancer
9. Researchers identify genes associated with onset age of Parkinsons disease
10. BUSM researchers identify better laser for treating facial spider veins
11. Toronto researchers discover novel circulation in human eye, new glaucoma treatment target
Post Your Comments:
(Date:10/13/2015)... ... October 13, 2015 , ... ... development solutions for drugs, biologics, consumer health and animal health products, today announced ... will lead a new, dedicated global team of drug development and technology experts. ...
(Date:10/12/2015)... Nashville, TN (PRWEB) , ... October 13, 2015 ... ... the recipients of its biannual Heroes in Recovery Awards at Foundations Recovery Network’s ... Foundations Recovery Network presented the one-of-a-kind awards to Noah Levine and Dean Dauphinais ...
(Date:10/12/2015)... ... October 13, 2015 , ... North American Tool Corporation has been named ... National Meeting in Rosemont, IL on October 4th. , Each year, ... excellence that customers have come to expect from members of IBC’s marketing group. ...
(Date:10/12/2015)... ... ... of the “Check-In and Win a Vacation to Hawaii” Facebook contest at Gold’s Gym ... didn’t believe I could win a free vacation simply by checking in on Facebook every ... and invest in my own health – and now I’m going to Hawaii.” , Thanks ...
(Date:10/12/2015)... ... , ... Amerec , a leader in the steam and sauna industry, ... be displaying custom sauna and steam room solutions at the ISPA Conference & Expo ... customers, SpaEquip is recognized for their ability to assist in the design and implementation ...
Breaking Medicine News(10 mins):
(Date:10/12/2015)... Minn. , Oct. 12, 2015 Device ... a need to help integrate these devices into existing ... of ergonomic healthcare mounting and mobility solutions, has launched ... lightest cart yet, for a wide array of laptops ... Cart SV10 was developed exclusively for Microsoft Surface and ...
(Date:10/12/2015)... , October 12, 2015 ... Forecast to grow at 7.2% CAGR, microscopy ... by rising focus on nanotechnology, technological advancements, ... research report available with ... . --> Complete report ...
(Date:10/12/2015)... England , Oct. 12, 2015 Indivior PLC ... the District of Delaware granted the ... Teva Pharmaceuticals, Abbreviated New Drug Application (ANDA) No. 205299 to ... SUBOXONE® (buprenorphine and naloxone) Sublingual Film (CIII) in ... --> Since August 2013, Indivior has received Paragraph ...
Breaking Medicine Technology: