Navigation Links
Researchers discover root cause of blood vessel damage in diabetes
Date:1/28/2011

A key mechanism that appears to contribute to blood vessel damage in people with diabetes has been identified by researchers at Washington University School of Medicine in St. Louis.

Blood vessel problems are a common diabetes complication. Many of the nearly 26 million Americans with the disease face the prospect of amputations, heart attack, stroke and vision loss because of damaged vessels.

Reporting in the Journal of Biological Chemistry, the Washington University researchers say studies in mice show that the damage appears to involve two enzymes, fatty acid synthase (FAS) and nitric oxide synthase (NOS), that interact in the cells that line blood vessel walls.

"We already knew that in diabetes there's a defect in the endothelial cells that line the blood vessels," says first author Xiaochao Wei, PhD. "People with diabetes also have depressed levels of fatty acid synthase. But this is the first time we've been able to link those observations together."

Wei is a postdoctoral research scholar in the lab of Clay F. Semenkovich, MD, the Herbert S. Gasser Professor of Medicine, professor of cell biology and physiology and chief of the Division of Endocrinology, Metabolism and Lipid Research.

Wei studied mice that had been genetically engineered to make FAS in all of their tissues except the endothelial cells that line blood vessels. These so-called FASTie mice experienced problems in the vessels that were similar to those seen in animals with diabetes.

AUDIO: Nearly 26 million americans have some form of diabetes, and scientists know that many of them will develop blood vessel damage as a result, but they haven't known what causes...

Click here for more information.

"It turns out that there are strong parallels between the complete absence of FAS and the deficiencies in FAS induced by lack of insulin and by insulin resistance," Semenkovich says.

Comparing FASTie mice to normal animals, as well as to mice with diabetes, Wei and Semenkovich determined that mice without FAS, and with low levels of FAS, could not make the substance that anchors nitric oxide synthase to the endothelial cells in blood vessels.

"We've known for many years that to have an effect, NOS has to be anchored to the wall of the vessel," Semenkovich says. "Xiaochao discovered that fatty acid synthase preferentially makes a lipid that attaches to NOS, allowing it to hook to the cell membrane and to produce normal, healthy blood vessels."

In the FASTie mice, blood vessels were leaky, and in cases when the vessel was injured, the mice were unable to generate new blood vessel growth.

The actual mechanism involved in binding NOS to the endothelial cells is called palmitoylation. Without FAS, the genetically engineered mice lose NOS palmitoylation and are unable to modify NOS so that it will interact with the endothelial cell membrane. That results in blood vessel problems.

"In animals that don't have fatty acid synthase and normal nitric oxide synthase in endothelial cells, we saw a lot of leaky blood vessels," Semenkovich explains. "The mice also were more susceptible to the consequences of infection, and they couldn't repair damage that occurred problems that also tend to be common in people with diabetes."

In one set of experiments, the researchers interrupted blood flow in the leg of a normal mouse and in a FASTie mouse.

"The control animals regained blood vessel formation promptly," Semenkovich says, "but that did not happen in the animals that were modified to be missing fatty acid synthase."

It's a long way, however, from a mouse to a person, so the researchers next looked at human endothelial cells, and they found that a similar mechanism was at work.

"Our findings strongly suggest that if we can use a drug or another enzyme to promote fatty acid synthase activity, specifically in blood vessels, it might be helpful to patients with diabetes," Wei says. "We also have been able to demonstrate that palmitoylation of nitric oxide synthase is impaired in diabetes, and if we can find a way to promote the palmitoylation of NOS, even independent of fatty acid synthase, it may be possible to treat some of the vascular complications of diabetes."

And it shouldn't matter whether a person has type 1 diabetes and can't manufacture insulin or the more common type 2 diabetes, in which a person becomes resistant to insulin.

"That's one of the key findings," Semenkovich says. "It won't matter whether it's an absence of insulin or resistance to insulin: both are associated with defects in FAS."


'/>"/>

Contact: Jim Dryden
jdryden@wustl.edu
314-286-0110
Washington University School of Medicine
Source:Eurekalert  

Related medicine news :

1. Researchers discover age of onset of puberty predicts adult osteoporosis risk
2. Ben-Gurion U. researchers determine that a first medical opinion can influence the second
3. Researchers uncover link to increased atherosclerosis risk in lupus patients
4. Princess Margaret Hospital researchers identify a key enzyme that affects radiation response
5. RIC study suggests researchers are entering a new era of advances in brain research
6. Zebrafish popular with researchers
7. UCLA researchers eliminate major roadblock in regenerative medicine
8. Researchers use cell profiling to detect abnormalities -- including cancer
9. Workplace noise-related hearing loss affects sleep quality -- Ben Gurion U. researchers
10. Researchers reveal function of novel molecule that underlies human deafness
11. WSU researchers apply fatigue model to fatal commuter air crash
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Researchers discover root cause of blood vessel damage in diabetes
(Date:4/28/2017)... Washington, DC (PRWEB) , ... April 28, 2017 ... ... Unplanned Pregnancy (The National Campaign) announces its support for the Access to ... by Sen. Jeanne Shaheen (D-NH) and Rep. Jackie Speier (D-CA), will help to ...
(Date:4/28/2017)... ... 2017 , ... Horizon Blue Cross Blue Shield of New Jersey (BCBSNJ) announced ... its outlook as “stable.” At the same time, the ratings agency cautioned that the ... dip below “capital adequacy” thresholds required for its strong rating. , “Horizon is committed ...
(Date:4/28/2017)... ... ... The Radiology Business Management Association (RBMA) is pleased to announce its ... has been in place since the RBMA was founded in 1968 with all board ... Hamilton, MHA, CMM, FRBMA, as president. Dr. Dickerson the chief executive officer for Clinical ...
(Date:4/28/2017)... Ca (PRWEB) , ... April 28, 2017 , ... ... cardiac or hERG liability could substantially improve drug safety and minimize the cost ... provided for validating ion channel inhibition using cell lines and for cardiac toxicity ...
(Date:4/28/2017)... UTAH (PRWEB) , ... April 28, 2017 , ... ... Account Manager for the North East region. Côté has 20+ years of experience ... Prior to Phytomer, Côté worked with an array of high-end cosmetic brands, retail ...
Breaking Medicine News(10 mins):
(Date:4/20/2017)... 20, 2017 Research and Markets has ... Manufacturing Services Market Analysis By Service (Manufacturing, Research), By Country, ... - 2025" report to their offering. ... The Latin American pharmaceutical contract manufacturing ... 2025 Low drug registration cost in Latin American ...
(Date:4/19/2017)... 19, 2017 The Mobile X-Ray product segment is ... CAGR during the forecast period Mobile X-Ray segment ... digital mobile X-Ray devices market, which is estimated to be ... at a CAGR of 7% over the forecast period. Mobile ... more than US$ 100 Mn in 2017 over 2016. The ...
(Date:4/19/2017)... YORK , April 19, 2017 ... This report on the prostate cancer therapeutics ... the global market. Increasing prevalence of prostate cancer, ... innovation in the development of new drugs & ... prostate cancer drug due to lesser side effects ...
Breaking Medicine Technology: