Navigation Links
Researchers develop magnetic molecular machines to deliver drugs to unhealthy cells
Date:8/10/2010

Scientists from UCLA's California NanoSystems Institute and Korea's Yonsei University have developed an innovative method that enables nanomachines to release drugs inside living cancer cells when activated remotely by an oscillating magnetic field.

The new system the first to utilize a class of porous nanomaterials driven by a magnetic core has the potential to improve both targeted drug-delivery and magnetic resonance imaging in the treatment of cancer and other diseases.

The research appears in the July issue of the Journal of the American Chemical Society.

In recent years, cancer research has increasingly focused on developing therapies that, unlike chemotherapy, target only cancer cells while leaving healthy cells unharmed. To that end, scientists have created nanomachines that can trap and release drug molecules from pores directly into individual cancer cells in response to a stimulus.

While many methods have been created for controlling how and when pores load and unload their cargos, for therapeutic applications, an external and noninvasive method of activation is preferable for the most effective results.

The new method, developed by the research groups of Jeffrey Zink, a UCLA professor of chemistry and biochemistry, and Jinwoo Cheon, a professor of chemistry at Korea's Yonsei University, uses a material that combines a framework of mesoporous silica nanoparticles with magnetic zinc-doped iron oxide nanocrystals, along with attached nanovalves that help hold drug molecules in the pores. When a magnetic-field stimulus is applied, the valves open and release the drug molecules from the pores into the target cells.

"The hydrophobic nature of the interior of the pores, as well as the ability to functionalize the silica surface with hydrophilic functionalities, makes these particles attractive for anti-cancer drug delivery," Zink said. "Adding a magnetic core to the silica-based nanoparticles is of interest for its potential applications in magnetic resonance imaging, as addition of the magnetic core may make it useful as a contrast agent."

For this study, nanoparticles carrying the anti-cancer drug doxorubicin were introduced to and endocytosed by breast cancer cells. When the cancer cells containing the nanoparticles were then exposed to an oscillating magnetic field, cell death occurred.

"The novel magnetic-core silica nanoparticles are effective in activating nanovalves which release anti-cancer drugs when they are exposed to an oscillating magnetic field," Zink said.

The magnetic-field oscillation causes the zinc-doped iron oxide nanocrystals to heat. This increased heat causes the molecular machines to activate, and the doxorubicin in the pores is delivered into the cells.

"Magnetic nanocrystals are important in biomedical applications because they can be used for both therapeutics and imaging," said Cheon, director of the National Creative Research Initiative Center for Evolutionary Nanoparticles and the H.G. Underwood Professor of Chemistry and division head of the Nano-Medical National Core Research Center at Yonsei University.

"The ability to deliver anti-cancer drugs only to the cancer cells without affecting healthy cells is of key importance," added Cheon who is also a visiting professor at UCLA's CNSI.

Experiments for the research project were performed by UCLA graduate students Courtney Thomas and Daniel Ferris and Yonsei University graduate students Je-Hyun Lee and Eunsook Kim, who are part of the research group of professor Jeon-Soo Shin. The research team also involved Fraser Stoddard, a professor of chemistry at Northwestern University who began his collaboration with Zink while he was a professor of chemistry at UCLA. During his UCLA tenure, Stoddart served as Fred Kavli Chair of Nanosystems Sciences and director of the CNSI, positions now held by distinguished professor of chemistry Paul S. Weiss.

The next step in the research will be to examine the effects in vivo and to determine if we can use this to offer precise control over location of delivered drugs. The ultimate goal would be to develop this system to have applicability in treatment of cancer patients.


'/>"/>

Contact: Jennifer Marcus
jmarcus@cnsi.ucla.edu
310-267-4839
University of California - Los Angeles
Source:Eurekalert

Related medicine news :

1. UCLA researchers discover protein that shuttles RNA into cell mitochondria
2. Help wanted: Highly cited researchers needed for high-ranking positions at research institutions
3. NIST researchers measure high infrared power levels from some green lasers
4. Mayo Clinic researchers share latest findings in CT radiation dose reduction efforts
5. Researchers develop advanced search tool to help physicians sort and retrieve vital EMR data
6. Researchers identify key enzyme in DNA repair pathway
7. Researchers study benefits of white button mushrooms
8. Use of decision-aid program increases safety for women experiencing abuse, researchers find
9. Researchers uncover biological rationale for why intensive lupus treatment works
10. OHSU Knight Cancer Institute researchers isolate importance of gene in breast cancer prognosis
11. Researchers pinpoint key stem cells for eating and sex
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/25/2016)... ... June 25, 2016 , ... "With 30 hand-drawn hand ... project," said Christina Austin - CEO of Pixel Film Studios. , ProHand Cartoon’s ... within Final Cut Pro X . Simply select a ProHand generator and drag ...
(Date:6/25/2016)... ... June 25, 2016 , ... Dr. ... from injury. Recently, he has implemented orthobiologic procedures as a method for treating ... one of the first doctors to perform the treatment. Orthobiologics are substances that ...
(Date:6/24/2016)... ... June 24, 2016 , ... A recent article published June 14 ... The article goes on to state that individuals are now more comfortable seeking to ... operations such as calf and cheek reduction. The Los Angeles area medical group, Beverly ...
(Date:6/24/2016)... ... ... crisis. Her son James, eight, was out of control. Prone to extreme mood shifts and ... him, he couldn’t control his emotions,” remembers Marcy. “If there was a knife on ... say he was going to kill them. If we were driving on the freeway, ...
(Date:6/24/2016)... ... June 24, 2016 , ... Dr. Amanda Cheng, an ... Cheng has extensive experience with all areas of orthodontics, including robotic Suresmile technology, ... , Micro-osteoperforation is a revolutionary adjunct to orthodontic treatment. It can be ...
Breaking Medicine News(10 mins):
(Date:6/23/2016)... , June 23, 2016 Research and ... Devices Medical Market Analysis 2016 - Forecast to 2022" ... The report contains up to date financial data derived ... Assessment of major trends with potential impact on the market ... of market segmentation which comprises of sub markets, regional and ...
(Date:6/23/2016)... Research and Markets has announced the ... report to their offering. ... favourable commercial environment for MedImmune to enter. The US ageing ... serve to drive considerable growth for effective anti-influenza medications. The ... sales considerably, but development is still in its infancy. ...
(Date:6/23/2016)... , , , WHEN: ... , , , , LOCATION: , , , Online, with ... , EXPERT PANELISTS:  , , , Frost & Sullivan,s Global Vice ... Senior Industry Analyst, Divyaa Ravishankar and Unmesh Lal, Program Manager , ... industry is witnessing an exceptional era. Several new demand spaces, such ...
Breaking Medicine Technology: