Navigation Links
Radionuclide treatment against small tumors and metastases
Date:6/16/2011

This release is available in German.

A cancer diagnosis is not necessarily a death sentence. There are now quite a number of possibilities to treat cancer. In addition to radiotherapy and chemotherapy, so-called radionuclide treatment has also become an important component in the fight against the mutated cells. It involves injecting radioactive elements, so-called nuclides, into the patient's circulatory system. Bonded to special molecules which preferentially attach themselves to cancer cells, the nuclides are pumped through the body by the heart until they finally find their target: a cancer cell. Having arrived there, they attach themselves to its cell walls, decay and thus release radiation into their surroundings. This attacks the cancer cells at close range and ideally destroys them.

Lutetium-177 is a nuclide already used for clinical applications. As it decays, fast electrons, so-called beta particles, are generated. In human tissue they have a range of up to 100 micrometers, five times the diameter of a tumor cell. They can therefore also damage healthy tissue in the vicinity. Dr. Silvia Lehenberger, a radiochemist at the TUM, has now succeeded in producing the Terbium-161 nuclide pure enough and in quantities sufficient for therapeutic applications. The nuclide emits not only the beta particles, but also conversion and Auger electrons, which have a range of only 0.5 to 30 micrometers. Their ranges match the size of tumor cells, making them ideal for the treatment of small tumors and metastases. "Moreover, the nuclide has a higher energy content than comparable particles," explains Silvia Lehenberger. "This means smaller doses can be administered to the patient, which in turn means a reduction in the radiation exposure."

Like lutetium or neodymium, which is familiar from high-power magnets, terbium is one of the so-called rare earth metals. The elements of the rare earths are extremely similar in chemical terms. Moreover, the raw material contains impurities which would not be permissible for a clinical application. It was therefore essential to develop suitable separation methods in order to be able to isolate the desired terbium-161 in as pure a state as possible. Coauthor and TUM colleague Christoph Barkhausen played a crucial role in the development of the separation method. The similarity of the rare earth elements also has an advantage, however: The medical application worked out for Lutetium-177 can also be used for Terbium-161.

A cooperation between Silvia Lehenberger and researchers at the Paul Scherrer Institute in Villingen (Switzerland) has already been able to prove the effectiveness of the nuclide on cancer cells in the laboratory. This is only the first step on the road to the final medication, however. It must pass a great many tests before it can be administered to people in hospital.

The researchers produced the Terbium-161 nuclide from Gadolinium-160 by neutron irradiation at the Garching FRM II research neutron source. Terbium-161 is ideal for therapeutic purposes because it has a half-life of only 6.9 days. This has the advantage that, after it has been produced, it can be transported to the clinic where it is to be used without losing much of its activity; it also means that the radiation has already decayed to about one percent of its original value after 50 days.

The work was undertaken as part of a cooperation between Radiochemistry Munich (RCM) at the TUM and the Laboratory for Radiochemistry and Environmental Chemistry and the Center for Radiopharmaceutical Sciences at the Paul Scherrer Institute (Villingen/Switzerland). The Terbium-161 was mainly produced at the neutron source of the Technische Universitaet Muenchen in Garching and additionally at the Institut Laue-Langevin in Grenoble and in the neutron source of the Helmholtz Center Berlin. Lutetium-177 for comparative tests was provided by Isotope Technologies Garching GmbH, which has been providing this nuclide to hospitals for many years for therapeutic purposes.


'/>"/>

Contact: Dr. Andreas Battenberg
battenberg@zv.tum.de
49-892-891-0510
Technische Universitaet Muenchen
Source:Eurekalert  

Related medicine news :

1. Treatment gap leaves many older adults at unnecessary risk of fracture
2. Cooling the brain during sleep may be a natural and effective treatment for insomnia
3. Certain head and neck cancer patients benefit from second round of treatment
4. Treatment for Abuse of Anti-Anxiety Drugs Tripled Over 10 Years
5. Coffee drinking improves hepatitis C treatment response
6. Many patients with advanced cancers get treatments that wont help
7. Surgically shrinking the stomach when conservative weight-loss treatments fail
8. Calorie-burning brown fat is a potential obesity treatment, researchers say
9. Flaxseed Fails as Treatment for Hot Flashes
10. Stem cell treatment may offer option for broken bones that dont heal
11. Anorexic girls have increased bone density after physiological estrogen treatment
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Radionuclide treatment against small tumors and metastases
(Date:2/12/2016)... CA (PRWEB) , ... February 12, 2016 , ... As ... a hectic schedule, a demanding job, and no time to decompress, Rabinowitz found herself ... dedicated herself to meditation for its impact on her life, implementing a 20-minute-per-day meditation ...
(Date:2/12/2016)... ... February 12, 2016 , ... The ThedaCare Center ... Francisco General Hospital on April 5-7. The series is a multi-day, multi-workshop event ... The workshops cover a broad range of topics, including coaching skills, the scientific ...
(Date:2/12/2016)... ... February 12, 2016 , ... Fisher House Foundation Chairman and CEO Kenneth Fisher ... Military Support Alliance president Scott Bensing, and Peggy Kearns Director, VA Southern Nevada Healthcare ... System. This will be the first Fisher House in Nevada, and will provide ...
(Date:2/12/2016)... ... ... Vail knee specialist Robert LaPrade, MD, PhD was named one of ... of physicians establishing, leading and partnering with ambulatory surgery centers across the United States. ... also known as an ASC, is a modern health care facility focused on providing ...
(Date:2/12/2016)... , ... February 12, 2016 , ... Donor Network West, ... California and Nevada, announced a partnership with San Ramon Regional Medical Center. Under the ... hospital’s facilities as a way to accommodate a more certain time frame for donor ...
Breaking Medicine News(10 mins):
(Date:2/11/2016)... -- The primary goal of this research is to ... usage of liquid biopsy. Key information the survey seeks ... of liquid biopsy adoption amidst future users - Predominantly ... - Sample inflow to conduct liquid biopsy tests - ... so on. - Correlation analysis of sample type and ...
(Date:2/11/2016)... NEW YORK , Feb. 11, 2016 ... and instruments commonly used in laboratories. These may range ... scale condensers. Laboratory glassware is made from borosilicate glass ... shock. Laboratory plasticware, on the other hand, started gaining ... that it was easier to replace glass with plastic ...
(Date:2/11/2016)... , Feb. 11, 2016  Governor Andrew M. ... will create 1,400 jobs throughout Western New ... partnership with the SUNY Polytechnic Institute, includes a major ... Building in Buffalo , as well ... manufacturing facility in Dunkirk . The ...
Breaking Medicine Technology: