Navigation Links
Porous structures help boost integration of host tissue with implants, study finds

NEW YORK Results published today in FASEB (the journal of the Federation of American Societies for Experimental Biology) by researchers at Columbia University, including Jeremy Mao of the Columbia College of Dental Medicine, demonstrate a novel way of using porous structures as a drug-delivery vehicle that can help boost the integration of host tissue with surgically implanted titanium.

Instead of being acted upon by the body as an impenetrable foreign object, the synthetic bone replacement currently being tested in rabbits features a porous material that allows for the delivery of microencapsulated bioactive cues that speed up the growth of host tissue at the site and allow for the growth of new bone.

A critical finding is that the drug dose needed for host tissue integration by this controlled-release approach is about 1/10 of that by the traditional technique of simple adsorption of the growth factor.

The approach could bring to orthopedics and dentistry a treatment that has wrought much interest and success in the field of cardiology with the development of drug-eluting stents, which take what is ordinarily an inert tube, and infuse it with drugs to make the placement of what is essentially a man-made, foreign object more compatible with the patients body, and at the same time, actively promoting healing of injured tissue.

After just four weeks, the porous implants that Mao and his team are using showed a 96 percent increase in bone-to-implant contact and a 50 percent increase in the growth of new bone over placebos.

How were such results achieved?

Since stem cells play a vital role in the growth of new bone, Mao and his team have focused on impregnating the titanium implants with a factor that homes the bodies own regenerating cells to the potential growth site to create and build on a platform for new bone.

The new approach may in the future obviate the need to harvest bone from a non-injured site in the body for grafting into the site of injury, as commonly performed now. This strategy, although often effective, creates additional wounds. The work of Mao and his team suggests that it should be possible to harnesses the bodys natural tissue regeneration capacity to recruit the right cells to the site where new bone tissue is needed. Implants that naturally attract the mesenchymal stem cells that can readily differentiate into bone, fat, cartilage and other types of cells could be the way of the future, Mao says. In comparison with donor site morbidity and pain in association with autologous tissue grafting, synthetic materials have the advantage of ready and endless supply without any sacrifice of donor tissue, he says.

The approach also overcomes a practical obstacle confronting many orthopedic surgeons.

This is a hybrid approach releasing biological cues from existing orthopedic and dental implants to recruit the bodys own stem cells. Its unrealistic, at least from what we know now, to build a cell culture room next to every operating room, Mao added. Using these types of porous implants doesnt require physicians to deliver stems cells so much as it allows the patients body to send its own cells to the right place.


Contact: Alex Lyda
Columbia University Medical Center

Related medicine news :

1. Smart insulin nanostructures pass feasibility test, UT study reports
2. Pharmos Restructures Operations in Israel
3. Health Capital Group Warns of Fallout to Hospitals From the Subprime Mortgage Crisis and Urges Hospitals to Immediately Reassess Existing Debt Structures and Capital Financing Plans
4. New treatment boosts muscle function in myasthenia gravis
5. Heavy Drinking Boosts Stroke Risk for Chinese Men
6. Longer ambulance journeys boost death risk for seriously ill patients
7. Traffic Fumes Plus Genes Boosts Kids Asthma Risk
8. Heart Attack Boosts Diabetes Risk
9. Smoking Boosts Risk for Head, Neck Cancers
10. Continued Statin Use Boosts Post-Stroke Outcomes
11. U.S. Initiative Seeks to Boost Hispanic Stroke Awareness
Post Your Comments:
(Date:11/27/2015)... ... November 27, 2015 , ... CBD College is proud to ... Programs (CAAHEP) awarded accreditation to its Diagnostic Medical Sonography program. CBD College is honored ... one of twelve colleges and universities in the state of California make the cut. ...
(Date:11/26/2015)... ... November 26, 2015 , ... Patients ... central Michigan, have come together on Thanksgiving Day to share the things that ... viewing on the Serenity Point YouTube channel, patients displayed what they wrote on ...
(Date:11/26/2015)... ... ... Jobs in hospital medical laboratories and in the imaging field lead the ... Aureus Medical Group . These fields, as well as travel nursing, ranked ... jobs through the company’s website, , The leading healthcare staffing agency ...
(Date:11/26/2015)... ... ... Indosoft Inc., developer and distributor of the world-class Asterisk based contact center ... reliability. , The new Q-Suite 6 platform is based on the latest Java Enterprise ... a specific piece of software for many key components of the suite. Much of ...
(Date:11/25/2015)... ... November 25, 2015 , ... ... recognized once again for its stellar workplace culture with the company’s Cincinnati office ... , Medical Solutions’ Cincinnati office was named a finalist in Cincinnati Business Courier’s ...
Breaking Medicine News(10 mins):
(Date:11/26/2015)... November 26, 2015 ... "Self Administration of High Viscosity Drugs" report ... has announced the addition of the "Self ... their offering. --> Research and Markets ... the "Self Administration of High Viscosity Drugs" ...
(Date:11/26/2015)... November 26, 2015 ... the "Radioimmunoassay Market by Type (Reagents ... Industry, Academics, Clinical Diagnostic Labs), Application (Research, ... to 2020" report to their offering. ... the addition of the "Radioimmunoassay Market ...
(Date:11/25/2015)... 25, 2015 ... the "Global Brain Monitoring Devices Market ... --> ) has announced the ... Devices Market 2015-2019" report to their ... ( ) has announced the addition ...
Breaking Medicine Technology: