Navigation Links
Novel rehabilitation device improves motor skills after stroke
Date:12/1/2013

CHICAGO Using a novel stroke rehabilitation device that converts an individual's thoughts to electrical impulses to move upper extremities, stroke patients reported improvements in their motor function and ability to perform activities of daily living. Results of the study were presented today at the annual meeting of the Radiological Society of North America (RSNA).

"Each year, nearly 800,000 people suffer a new or recurrent stroke in the United States, and 50 percent of those have some degree of upper extremity disability," said Vivek Prabhakaran, M.D., Ph.D., director of functional neuroimaging in radiology at the University of Wisconsin-Madison. "Rehabilitation sessions with our device allow patients to achieve an additional level of recovery and a higher quality of life."

Dr. Prabhakaran, along with co-principal investigator Justin Williams, Ph.D., and a multidisciplinary team, built the new rehabilitation device by pairing a functional electrical stimulation (FES) system, which is currently used to help stroke patients recover limb function, and a brain control interface (BCI), which provides a direct communication pathway between the brain and this peripheral stimulation device.

In an FES system, electrical currents are used to activate nerves in paralyzed extremities. Using a computer and an electrode cap placed on the head, the new BCI-FES device (called the Closed-Loop Neural Activity-Triggered Stroke Rehabilitation Device) interprets electrical impulses from the brain and transmits the information to the FES.

"FES is a passive technique in that the electrical impulses move the patients' extremities for them," Dr. Prabhakaran said. "When a patient using our device is asked to imagine or attempt to move his or her hand, the BCI translates that brain activity to a signal that triggers the FES. Our system adds an active component to the rehabilitation by linking brain activity to the peripheral stimulation device, which gives the patients direct control over their movement."

The Wisconsin team conducted a small clinical trial of their rehabilitation device, enlisting eight patients with one hand affected by stroke. The patients were also able to serve as a control group by using their normal, unaffected hand. Patients in the study represented a wide range of stroke severity and amount of time elapsed since the stroke occurred. Despite having received standard rehabilitative care, the patients had varying degrees of residual motor deficits in their upper extremities. Each underwent nine to 15 rehabilitation sessions of two to three hours with the new device over a period of three to six weeks.

The patients also underwent functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) before, at the mid-point of, at the end of, and one month following the rehabilitation period. fMRI is able to show which areas of the brain are activated while the patient performs a task, and DTI reveals the integrity of fibers within the white matter that connects the brain's functional areas.

Patients who suffered a stroke of moderate severity realized the greatest improvements to motor function following the rehabilitation sessions. Patients diagnosed with mild and severe strokes reported improved ability to complete activities of daily living following rehabilitation.

Dr. Prabhakaran said the results captured throughout the rehabilitation processspecifically the ratio of hemispheric involvement of motor areasrelated well to the behavioral changes observed in patients. A comparison of pre-rehabilitation and post-rehabilitation fMRI results revealed reorganization in the regions of the brain responsible for motor function. DTI results over the course of the rehabilitation period revealed a gradual strengthening of the integrity of the fiber tracts.

"Our hope is that this device not only shortens rehabilitation time for stroke patients, but also that it brings a higher level of recovery than is achievable with the current standard of care," Dr. Prabhakaran said. "We believe brain imaging will be helpful in both planning and tracking a stroke patient's therapy, as well as learning more about neuroplastic changes during recovery."


'/>"/>

Contact: Linda Brooks
lbrooks@rsna.org
630-590-7762
Radiological Society of North America
Source:Eurekalert  

Related medicine news :

1. Novel compound demonstrates anti-leukemic effect in zebrafish, shows promise for human treatment
2. Rutgers team discovers novel approach to stimulate immune cells
3. Novel drug candidates offer new route to controlling inflammation
4. Researchers present new findings for novel pancreatic cancer vaccine
5. Novel biomarkers reveal evidence of radiation exposure
6. VCU Massey Cancer Center sees potential in novel leukemia treatment
7. Study supports urate protection against Parkinsons disease, hints at novel mechanism
8. Novel Natural Sciences Repository Opens Web Portal
9. Novel Anti-Inflammatories May Offer a New Approach for the Treatment of Stroke
10. LA BioMed investigators, Drs. Kevin Bruhn and Noah Craft, develop novel treatment for melanoma
11. Novel radiation therapy safely treats prostate cancer and lowers the risk of recurrence
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Novel rehabilitation device improves motor skills after stroke
(Date:2/10/2016)... ... 2016 , ... AHRA: The Association for Medical Imaging Management ... will serve as keynote speaker at the organization’s 2016 Spring Conference. Fox’s topic, ... effectively communicate with their own organizational staff and leadership. , “I am ...
(Date:2/10/2016)... ... February 10, 2016 , ... The Club ... awarded the prestigious Distinguished Emerald Club of the World award, as determined by ... one of the most respected trade publications serving private clubs. , “We’d like ...
(Date:2/10/2016)... Petaluma, CA (PRWEB) , ... February 10, 2016 , ... ... newest and most versatile series of monitor mounts ever. , “Our goal was ... flexible and easy to install system that we have ever created.” said Darren Hulsey, ...
(Date:2/10/2016)... ... ... A new leadership team for Mid-South Youth Camp, operated by Freed-Hardeman University, will ... night, Feb. 8, prior to the evening session of the university’s 80th Annual Bible ... Camp, has been named director. Gayle McDonald, currently the assistant director of MSYC, will ...
(Date:2/10/2016)... ... February 09, 2016 , ... Traumatic Brian Injury ... injury may be one of many possible sources: sports, car accidents, falls, work ... , Mastering Rehab Solutions for the Complexities of Concussions is designed ...
Breaking Medicine News(10 mins):
(Date:2/10/2016)... 10, 2016 CERS ), Medivation, Inc. ... ) and Celldex Therapeutics, Inc. (NASDAQ: CLDX ). ... Adamas Pharmaceuticals, Inc. (NASDAQ: ADMS ) and Celldex Therapeutics, ... Orphan Drug Designations become vitally important in the development of ... drugs and biologics which are defined as those intended for ...
(Date:2/10/2016)... /PRNewswire/ - The President of New Venture Medical, ... an anti-radiation product from their Research and Development ... treatment of cancer using radiation and the treating ... the healing of radiation burns, even when open ... the healthy cells from radiation damage. It selectively ...
(Date:2/10/2016)... , Feb. 10, 2016  Silicon Biosystems Menarini ... products that help uncover the biological complexities of ... Inc., a developer of innovative technologies for genomics ... partnership aimed at enabling translational researchers to obtain ... couple hundred tumor and normal cells in an ...
Breaking Medicine Technology: