Navigation Links
New vaccine approach prevents/reverses diabetes in lab study at Children's Hospital of Pittsburgh
Date:5/28/2008

Microspheres carrying targeted nucleic acid molecules fabricated in the laboratory have been shown to prevent and even reverse new-onset cases of type 1 diabetes in animal models. The results of these studies were reported by diabetes researchers at the John G. Rangos Sr. Research Center at Childrens Hospital of Pittsburgh of UPMC and Baxter Healthcare Corporation.

In a research study at Childrens Hospital, the scientists injected the microspheres under the skin near the pancreas of mice with autoimmune diabetes. The microspheres were then captured by white blood cells known as dendritic cells which released the nucleic acid molecules within the dendritic cells. The released molecules reprogrammed these cells, and then migrated to the pancreas. There, they turned off the immune system attack on insulin-producing beta cells. Within weeks, the diabetic mice were producing insulin again with reduced blood glucose levels.

Results of the microsphere study are published in the June issue of Diabetes, the journal of the American Diabetes Association.

In type 1 diabetes, T cells from the immune system travel to the pancreas and destroy beta cells, which produce insulin. The scientists led by Massimo Trucco, MD, and Nick Giannoukakis, PhD found that the microspheres reprogram dendritic cells to block the signaling mechanism that sends T cells to destroy beta cells. The microsphere research builds on previous research by Drs. Giannoukakis and Trucco in which they used dendritic cells delivered to the pancreas in another method to turn off the immune systems attack on insulin-producing beta cells, thereby allowing the cells of the pancreas to recover and begin producing insulin again.

Drs. Trucco and Giannoukakis anticipate that the latest research involving microspheres represents a significant improvement over their previous approach to extract (through a process known as leukapheresis) and reprogram the dendritic cells.

The microspheres prevented the onset of type 1 diabetes and, most importantly, exhibited a capacity to reverse hyperglycemia, suggesting a potential to reverse type 1 diabetes in new-onset patients, said Dr. Trucco, chief of the Division of Immunogenetics at Childrens. This novel microsphere approach represents for the first time a vaccine with the potential to suppress and reverse diabetes. This finding holds true promise for clinical testing in people with type 1 diabetes.

Currently, Drs. Trucco and Giannoukakis are conducting a clinical trial of their leukapheresis-based dendritic cell approach in humans at Childrens. This Phase 1 clinical trial has been approved by the U.S. Food and Drug Administration (FDA).

Our ultimate goal is to offer this dendritic cell vaccine or microsphere-based therapy to children at risk for or newly diagnosed with type 1 diabetes. We want to make the procedure as safe and comfortable as possible, Dr. Giannoukakis said.

The trial began late last year and enrollment is ongoing. The study, which plans to enroll a total of 15 adults over age 18 with type 1 diabetes, is expected to conclude later this year.

If the leukapheresis-based approach continues to show exceptional safety, the researchers hope to launch a national clinical trial that will assess the effectiveness of the dendritic cells in pediatric patients to prevent diabetes or reverse the disease right after it is clinically confirmed. At a later date, it is anticipated that Baxter Healthcare will collaborate with Drs. Trucco and Giannoukakis in a clinical trial utilizing the unique microsphere-based approach.

Leukapheresis is a process that allows for the collection of dendritic cell precursors from the patients in the study, which takes two to four hours. After the precursors are collected, they are treated in the lab with specific growth factors that turn them into dendritic cells. The growth factors are also combined with short DNA sequences that specifically block the expression of molecules that are found at the surface of dendritic cells known as CD40, CD80 and CD86. Once these reprogrammed dendritic cells are tested in the lab, they are injected back into the patient. They then orchestrate an anti-diabetic effect by suppressing the activity of T-cells which are responsible for the impairment and destruction of the pancreatic insulin-producing cells.

Using microspheres will be much less invasive for the patient and much more efficient for clinicians. We wouldnt need to harvest a patients dendritic cells, and it would eliminate the need to genetically reprogram the dendritic cells in a sterile, off-site facility. Instead, the patient would receive the microsphere injection with a small needle in a clinic setting in a matter of minutes, Dr. Giannoukakis said.


'/>"/>

Contact: Marc Lukasiak
marc.lukasiak@chp.edu
412-692-7919
Children's Hospital of Pittsburgh
Source:Eurekalert

Related medicine news :

1. Jenny McCarthy & Jim Carrey Host the Historic Green Our Vaccines March and Rally in Washington DC on June 4, 2008
2. Study finds unique HIV vaccine formula elicits strong immune responses
3. AVANT Immunotherapeutics Announces Hart-Scott Rodino Clearance to License Cancer Vaccine to Pfizer
4. NIAID to advance B-cell approach to HIV vaccines
5. Vaccine triggers immune response, prevents Alzheimers
6. Prostate Cancer Vaccine Looks Promising in Early Trial
7. AIDS Action Urges Everyone to Help End the AIDS Epidemic by Being Part of the Search for an HIV Vaccine
8. World AIDS Vaccine Day 2008
9. Chemotherapy might help cancer vaccines work
10. CDC Recommends Shingles Vaccine for Those Over 60
11. Dutch Authorize Manufacture of Vaccinogens New Cancer Vaccine; License Clears Path to European Production, Final FDA Trial
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/31/2016)... Linda, CA (PRWEB) , ... ... ... an approach to healthcare that considers individuals’ genetic characteristics and the physical ... and precision therapy work in sync. In personalized medicine, diagnosing an individual’s ...
(Date:5/31/2016)... ... May 31, 2016 , ... St. Joseph Medical ... health information exchange, which enables physicians at SJMC’s two hospital campuses, downtown and ... participating organizations in the exchange. SJMC’s membership in the health information exchange underscores ...
(Date:5/31/2016)... ... May 31, 2016 , ... ... back to particular advertising campaigns, to monitor the performance of sales and support ... maximize conversions and revenue. The software allows customers to record, transcribe, route, document, ...
(Date:5/31/2016)... ... May 31, 2016 , ... The Global Wellness Summit (GWS), ... on the future of wellness, travel, spa and beauty in Europe. The organization asked ... companies to leading economists and researchers - to forecast where wellness is headed in ...
(Date:5/31/2016)... ... ... Interest is on the rise for using the CRISPR-Cas9 system for functional ... hit validation. A key reason may be that high-throughput synthesis—combined with a proprietary algorithm ... collections in arrayed formats. , Arrayed crRNA screens have the advantage ...
Breaking Medicine News(10 mins):
(Date:5/31/2016)... Israel , May 31, 2016 CollPlant ... proprietary plant-based rhCollagen technology for tissue repair products - ... Scientist of Israel,s Ministry of ... million development project for 2016. The Chief Scientist,s grant amount ... authorized grant, which totaled NIS 4.7 million.  ...
(Date:5/31/2016)... PUNE, India , May 31, 2016 ... 2016" market research report with comparative analysis of Asthma ... mechanism of action (MoA), route of administration (RoA) and ... and press releases. It also reviews key players involved ... on late-stage and discontinued projects. Complete report ...
(Date:5/30/2016)... 30, 2016 According to ... Services Market by Type (Stability, Raw Materials, Method ... User (Pharmaceutical Companies, Medical Device Companies) - Global ... witnessed healthy growth during the last decade and ... 11.3% between 2016 and 2021 to reach USD ...
Breaking Medicine Technology: